1. Solving Bin Packing Problems Using VRPSolver Models
- Author
-
Ruslan Sadykov, Eduardo Uchoa, Artur Alves Pessoa, Universidade Federal Fluminense [Rio de Janeiro] (UFF), Reformulations based algorithms for Combinatorial Optimization (Realopt), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Experiments presented in this paper were carried out using the PlaFRIM (Federative Platform for Research in Computer Science and Mathematics), created under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI and IMB and other entities: Conseil Régional d’Aquitaine, Université de Bordeaux, CNRS and ANR in accordance to the 'Programme d’Investissements d’Avenir'. The research was partially supported by the following grants: CNPq 313601/2018-6, Faperj E-26/202.887/2017, and CAPES PrInt UFF n° 88881., Plafrim, Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
- Subjects
Mathematical optimization ,021103 operations research ,Bin packing problem ,Computer science ,0211 other engineering and technologies ,0102 computer and information sciences ,02 engineering and technology ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,Solver ,01 natural sciences ,Variable (computer science) ,010201 computation theory & mathematics ,Vehicle routing problem ,Column generation ,Heuristics ,Integer programming ,Smoothing - Abstract
International audience; We propose branch-cut-and-price algorithms for the classic bin packing problem and also for the following related problems: vector packing, variable sized bin packing and variable sized bin packing with optional items. The algorithms are defined as models for VRPSolver, a generic solver for vehicle routing problems. In that way, a simple parameterization enables the use of several branch-cut-and-price advanced elements: automatic stabilization by smoothing, limited-memory rank-1 cuts, enumeration, hierarchical strong branching and limited discrepancy search diving heuristics. As an original theoretical contribution, we prove that the branching over accumulated resource consumption (Gélinas et al. 1995), that does not increase the difficulty of the pricing subproblem, is sufficient for those bin packing models. Extensive computational results on instances from the literature show that the VRPSolver models have a performance that is very robust over all those problems, being often superior to the existing exact algorithms on the hardest instances. Several instances could be solved to optimality for the first time.
- Published
- 2021