1. A multi-task learning model using RR intervals and respiratory effort to assess sleep disordered breathing.
- Author
-
Xie J, Fonseca P, van Dijk J, Overeem S, and Long X
- Subjects
- Humans, Male, Middle Aged, Polysomnography, Female, Machine Learning, Adult, Neural Networks, Computer, Electrocardiography, Aged, Wakefulness physiology, Sleep, Sleep Apnea Syndromes physiopathology, Sleep Apnea Syndromes diagnosis, Respiration, Signal Processing, Computer-Assisted
- Abstract
Background: Sleep-disordered breathing (SDB) affects a significant portion of the population. As such, there is a need for accessible and affordable assessment methods for diagnosis but also case-finding and long-term follow-up. Research has focused on exploiting cardiac and respiratory signals to extract proxy measures for sleep combined with SDB event detection. We introduce a novel multi-task model combining cardiac activity and respiratory effort to perform sleep-wake classification and SDB event detection in order to automatically estimate the apnea-hypopnea index (AHI) as severity indicator., Methods: The proposed multi-task model utilized both convolutional and recurrent neural networks and was formed by a shared part for common feature extraction, a task-specific part for sleep-wake classification, and a task-specific part for SDB event detection. The model was trained with RR intervals derived from electrocardiogram and respiratory effort signals. To assess performance, overnight polysomnography (PSG) recordings from 198 patients with varying degree of SDB were included, with manually annotated sleep stages and SDB events., Results: We achieved a Cohen's kappa of 0.70 in the sleep-wake classification task, corresponding to a Spearman's correlation coefficient (R) of 0.830 between the estimated total sleep time (TST) and the TST obtained from PSG-based sleep scoring. Combining the sleep-wake classification and SDB detection results of the multi-task model, we obtained an R of 0.891 between the estimated and the reference AHI. For severity classification of SBD groups based on AHI, a Cohen's kappa of 0.58 was achieved. The multi-task model performed better than a single-task model proposed in a previous study for AHI estimation, in particular for patients with a lower sleep efficiency (R of 0.861 with the multi-task model and R of 0.746 with single-task model with subjects having sleep efficiency < 60%)., Conclusion: Assisted with automatic sleep-wake classification, our multi-task model demonstrated proficiency in estimating AHI and assessing SDB severity based on AHI in a fully automatic manner using RR intervals and respiratory effort. This shows the potential for improving SDB screening with unobtrusive sensors also for subjects with low sleep efficiency without adding additional sensors for sleep-wake detection., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF