1. Pregnancy and oestrogen regulate sinoatrial node calcium homeostasis and accelerate pacemaking.
- Author
-
El Khoury N, Ross JL, Long V, Thibault S, Ethier N, and Fiset C
- Subjects
- Animals, Arrhythmias, Cardiac genetics, Arrhythmias, Cardiac physiopathology, Arrhythmias, Cardiac prevention & control, Calcium Channels, L-Type genetics, Calcium Channels, L-Type metabolism, Cell Line, Estradiol pharmacology, Estrogen Receptor alpha genetics, Estrogen Receptor alpha metabolism, Estrogen Receptor beta genetics, Estrogen Receptor beta metabolism, Female, Homeostasis, Humans, Induced Pluripotent Stem Cells metabolism, Membrane Potentials, Mice, Inbred C57BL, Mice, Knockout, Myocytes, Cardiac metabolism, Pregnancy, Pregnancy Complications, Cardiovascular genetics, Pregnancy Complications, Cardiovascular physiopathology, Pregnancy Complications, Cardiovascular prevention & control, Ryanodine Receptor Calcium Release Channel genetics, Ryanodine Receptor Calcium Release Channel metabolism, Sinoatrial Node drug effects, Time Factors, Arrhythmias, Cardiac metabolism, Biological Clocks drug effects, Calcium metabolism, Calcium Signaling drug effects, Heart Rate drug effects, Pregnancy Complications, Cardiovascular metabolism, Sinoatrial Node metabolism
- Abstract
Aims: During pregnancy, there is a significant increase in heart rate (HR) potentially associated with an increased risk of arrhythmias or exacerbation of pre-existing cardiac conditions endangering both mother and foetus. Calcium homeostasis plays an important role in regulating automaticity of the sinoatrial node (SAN); however, its contribution to the accelerated HR during pregnancy remains unknown., Methods and Results: Using murine SAN cells, we showed that pregnancy increased L-type Ca2+ current (ICaL) and CaV1.3 mRNA expression, whereas T-type Ca2+ current (ICaT) and its underlying channel were unchanged. Analysis of SAN intra-cellular Ca2+ oscillations showed that the rate of spontaneous Ca2+ transients was significantly higher in pregnant mice along with a higher mRNA expression of ryanodine receptor. Assessment of supra-ventricular arrhythmias using programmed electrical stimulation protocols on anaesthetized mice revealed higher susceptibility in pregnancy. Of note, the modifications associated with pregnancy were reversible following delivery. Furthermore, chronic administration of 17β-estradiol (E2) to nodal-like human-induced pluripotent stem cell-derived cardiomyocytes (N-hiPSC-CM), control mice, oestrogen-receptor-β knockout (ERKOβ) but not ERKOα mice, accelerated cardiac automaticity, recapitulating the pregnancy phenotype in both mouse and human SAN cell models., Conclusion: Together, these results indicate that pregnancy considerably alters intra-cellular Ca2+ homeostasis sustaining faster HR during pregnancy. Importantly, these changes were dependent on an oestrogen receptor α (ERα) mechanism that resulted in increased ICaL and spontaneous Ca2+ release from the sarcoplasmic reticulum, highlighting a novel role for oestrogen in regulating HR.
- Published
- 2018
- Full Text
- View/download PDF