1. Propidium monoazide - polymerase chain reaction reveals viable microbial community shifts in anaerobic membrane bioreactors treating domestic sewage at low temperature.
- Author
-
Ni J, Ji J, Li YY, and Kubota K
- Subjects
- Waste Disposal, Fluid methods, Anaerobiosis, Temperature, RNA, Ribosomal, 16S genetics, Polymerase Chain Reaction, Bioreactors, Membranes, Artificial, Sewage microbiology, Microbiota
- Abstract
An anaerobic membrane bioreactor (AnMBR) treated domestic sewage at 15 °C under different hydraulic retention time (HRT) conditions (6, 12, 16, and 24 h). Propidium monoazide (PMA)-PCR excluded microorganisms without intact cell membranes, focusing on the viable microbial community in anaerobic digestion. The results showed that the 6-hour HRT had poor treatment performance: low chemical oxygen demand removal efficiency (below 80%) and high mean trans-membrane pressure and flux (15 kPa and 9.4 L/(m
2 h)). Comparatively, PMA-PCR combined with next-generation sequencing improved the identification of microbial changes compared to conventional 16S rRNA gene sequencing. HRT influenced microorganisms in the hydrolysis and acid-production stages, including carbohydrate-degrading bacteria such as Bifidobacterium and Prevotella 1. Remarkably, a comparison with an AnMBR at 25 °C showed Proteobacteria to be the main cause of membrane fouling in the low-temperature AnMBR, with most operational taxonomic units negatively correlated with HRT and solids retention time., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF