1. Fractional Dynamics and Modulational Instability in Long-Range Heisenberg Chains
- Author
-
Laetitia, My, Nguenang, Jp, Paglan, Pa, Dauxois, T, Trombettoni, A, Ruffo, S, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), and École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Numerical Analysis ,Heisenberg spin chains long-range interactions fractional equations modulational instability ,Statistical Mechanics (cond-mat.stat-mech) ,Applied Mathematics ,FOS: Physical sciences ,Heisenberg spin chains ,Modulational instability ,Pattern Formation and Solitons (nlin.PS) ,Nonlinear Sciences - Pattern Formation and Solitons ,Fractional equations ,Settore FIS/03 - Fisica della Materia ,Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici ,Long-range interactions ,Modeling and Simulation ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,Condensed Matter - Statistical Mechanics - Abstract
We study the effective dynamics of ferromagnetic spin chains in presence of long-range interactions. We consider the Heisenberg Hamiltonian in one dimension for which the spins are coupled through power-law long-range exchange interactions with exponent $\alpha$. We add to the Hamiltonian an anisotropy in the $z$-direction. In the framework of a semiclassical approach, we use the Holstein-Primakoff transformation to derive an effective long-range discrete nonlinear Schr\"odinger equation. We then perform the continuum limit and we obtain a fractional nonlinear Schr\"odinger-like equation. Finally, we study the modulational instability of plane-waves in the continuum limit and we prove that, at variance with the short-range case, plane waves are modulationally unstable for $\alpha < 3$. We also study the dependence of the modulation instability growth rate and critical wave-number on the parameters of the Hamiltonian and on the exponent $\alpha$.
- Published
- 2022