1. PAK1 Promotes Inflammation Induced by Sepsis through the Snail/CXCL2 Signaling Pathway.
- Author
-
Chen M, Pan L, Chen D, Wu Y, Ye J, Li K, Zhang N, and Xu J
- Subjects
- Mice, Animals, Humans, Inflammation, Apoptosis, Liver metabolism, Chemokine CXCL2 genetics, Chemokine CXCL2 metabolism, p21-Activated Kinases genetics, p21-Activated Kinases metabolism, Signal Transduction, Sepsis
- Abstract
Sepsis is a severe syndrome characterized by organ dysfunction, resulting from a systemic imbalance in response to infection. PAK1 plays a critical role in various diseases. The present study aimed to explore and delineate the mechanism of PAK1 in inflammation induced by sepsis. Bioinformatics analysis was performed to assess PAK1, snail, and CXCL2 expression in the whole blood of septic patients and the pathways enriched with PAK1. To simulate the sepsis model, THP-1 cells were stimulated with lipopolysaccharide. Gene expression was evaluated using qRT-PCR, while cell viability was assessed using CCK-8 assay. Cell apoptosis was tested with flow cytometry. Expression of inflammatory factors in cells following different treatments was analyzed using the enzyme linked immunosorbent assay (ELISA). Dual-luciferase and chromatin immunoprecipitation assays were conducted to verify the binding relationship between PAK1 and the snail. Mouse models of cecal ligation and puncture were established, and hematoxylin and eosin staining and ELISA were employed to detect the infiltration levels of inflammatory cells and the expression of related protective factors in lung, liver, and kidney tissues. The results demonstrated upregulation of PAK1, snail, and CXCL2 in the whole blood of septic patients, with PAK1 being enriched in the chemokine-related pathway. Knockdown of PAK1 significantly promoted the apoptosis of LPS-stimulated THP-1 cells and inhibited the expression of inflammatory factors. PAK1 upregulated the expression of the snail, which in turn promoted the expression of CXCL2. Thus, PAK1 mediated the sepsis-induced inflammatory response through the snail/CXCL2 pathway. In conclusion, PAK1 played a role in promoting inflammation induced by sepsis through the snail/CXCL2 axis, thereby providing a potential therapeutic target for the management of sepsis.
- Published
- 2024
- Full Text
- View/download PDF