22 results on '"Fractional Gaussian noise"'
Search Results
2. Long-Range Dependent Traffic Classification with Convolutional Neural Networks Based on Hurst Exponent Analysis
- Author
-
Katarzyna Filus, Adam Domański, Joanna Domańska, Dariusz Marek, and Jakub Szyguła
- Subjects
neural networks ,convolutional neural networks ,Hurst exponent ,self-similarity ,Internet traffic ,fractional Gaussian noise ,Science ,Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
The paper examines the ability of neural networks to classify Internet traffic data in terms of self-similarity expressed by the Hurst exponent. Fractional Gaussian noise is used for the generation of synthetic data for modeling the genuine ones. It is presented that the trained model is capable of classifying the synthetic data obtained from the Pareto distribution and the real traffic data. We present the results of training for different optimizers of the cost function and a different number of convolutional layers in the neural network.
- Published
- 2020
- Full Text
- View/download PDF
3. Fat Tail in the Phytoplankton Movement Patterns and Swimming Behavior: New Insights into the Prey-Predator Interactions
- Author
-
Xi Xiao, Carlo Cattani, Junyu He, Yan Yu, Caicai Xu, and Ming Li
- Subjects
Statistics and Probability ,Aquatic biology ,Population ,movement pattern ,010501 environmental sciences ,Biology ,01 natural sciences ,Predation ,03 medical and health sciences ,Phytoplankton ,QA1-939 ,education ,heavy-tailed distribution ,prey-predator interaction ,030304 developmental biology ,0105 earth and related environmental sciences ,QA299.6-433 ,0303 health sciences ,education.field_of_study ,self-similarity ,Ecology ,Movement (music) ,fractional-order systems ,long-range dependence processes ,fungi ,Statistical and Nonlinear Physics ,biology.organism_classification ,Oxyrrhis marina ,Movement pattern ,Heavy-tailed distribution ,fractional Gaussian noise ,phytoplankton ,Thermodynamics ,QC310.15-319 ,Mathematics ,Analysis - Abstract
Phytoplankton movement patterns and swimming behavior are important and basic topics in aquatic biology. Heavy tail distribution exists in diverse taxa and shows theoretical advantages in environments. The fat tails in the movement patterns and swimming behavior of phytoplankton in response to the food supply were studied. The log-normal distribution was used for fitting the probability density values of the movement data of Oxyrrhis marina. Results showed that obvious fat tails exist in the movement patterns of O. marina without and with positive stimulations of food supply. The algal cells tended to show a more chaotic and disorderly movement, with shorter and neat steps after adding the food source. At the same time, the randomness of turning rate, path curvature and swimming speed increased in O. marina cells with food supply. Generally, the responses of phytoplankton movement were stronger when supplied with direct prey cells rather than the cell-free filtrate. The scale-free random movements are considered to benefit the adaption of the entire phytoplankton population to varied environmental conditions. Inferentially, the movement pattern of O. marina should also have the characteristics of long-range dependence, local self-similarity and a system of fractional order.
- Published
- 2021
- Full Text
- View/download PDF
4. Long-Range Dependent Traffic Classification with Convolutional Neural Networks Based on Hurst Exponent Analysis
- Author
-
Jakub Szyguła, Adam Domański, Joanna Domańska, Katarzyna Filus, and Dariusz Marek
- Subjects
Computer science ,General Physics and Astronomy ,lcsh:Astrophysics ,02 engineering and technology ,Internet traffic ,Convolutional neural network ,Synthetic data ,Article ,symbols.namesake ,convolutional neural networks ,lcsh:QB460-466 ,0202 electrical engineering, electronic engineering, information engineering ,Pareto distribution ,lcsh:Science ,Hurst exponent ,Artificial neural network ,self-similarity ,business.industry ,020206 networking & telecommunications ,Pattern recognition ,neural networks ,lcsh:QC1-999 ,Traffic classification ,Gaussian noise ,fractional Gaussian noise ,symbols ,020201 artificial intelligence & image processing ,lcsh:Q ,Artificial intelligence ,business ,lcsh:Physics - Abstract
The paper examines the ability of neural networks to classify Internet traffic data in terms of self-similarity expressed by the Hurst exponent. Fractional Gaussian noise is used for the generation of synthetic data for modeling the genuine ones. It is presented that the trained model is capable of classifying the synthetic data obtained from the Pareto distribution and the real traffic data. We present the results of training for different optimizers of the cost function and a different number of convolutional layers in the neural network.
- Published
- 2020
5. A new process for modeling heartbeat signals during exhaustive run with an adaptive estimator of its fractal parameters.
- Author
-
Bardet, Jean-Marc, Kammoun, Imen, and Billat, Veronique
- Subjects
- *
MARATHON running , *GOODNESS-of-fit tests , *HEART diseases , *EXERCISE , *PARAMETERS (Statistics) - Abstract
This paper is devoted to a new study of the fractal behavior of heartbeats during a marathon. Such a case is interesting since it allows the examination of heart behavior during a very long exercise in order to reach reliable conclusions on the long-term properties of heartbeats. Three points of this study can be highlighted. First, the whole race heartbeats of each runner are automatically divided into several stages where the signal is nearly stationary and these stages are detected with an adaptive change points detection method. Secondly, a new process called the locally fractional Gaussian noise (LFGN) is proposed to fit such data. Finally, a wavelet-based method using a specific mother wavelet provides an adaptive procedure for estimating low frequency and high frequency fractal parameters as well as the corresponding frequency bandwidths. Such an estimator is theoretically proved to converge in the case of LFGNs, and simulations confirm this consistency. Moreover, an adaptive chi-squared goodness-of-fit test is also built, using this wavelet-based estimator. The application of this method to marathon heartbeat series indicates that the LFGN fits well data at each stage and that the low frequency fractal parameter increases during the race. A detection of a too large low frequency fractal parameter during the race could help prevent the too frequent heart failures occurring during marathons. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
6. Modeling and Analysis of Wireless LAN Traffic.
- Author
-
DASHDORJ YAMKHIN and YOUJIP WON
- Subjects
INTERNET traffic ,WIRELESS LANs ,LOCAL area networks ,TIME series analysis ,BIT rate ,DATA packeting ,DATA transmission systems ,RANDOM noise theory - Abstract
In this work, we present the results of our empirical study on 802:11 wireless LAN network traffic. We collect the packet trace from existing campus wireless LAN infrastructure. We analyze four different data sets: aggregate traffic, upstream traffic, downstream traffic, tcp only packet trace from aggregate traffic. We analyze the time series aspects of underlying traffic (byte count process and packet count process), marginal distribution of time series, and packet size distribution. We found that in all four data sets there exist long-range dependent properties in terms of byte count and packet count process. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. from the user to Internet, exhibits significant difference in packet size distribution from the rests. Average packet size of upstream traffic is 151:7byte while average packet size of the rest of the data sets are all greater than 260bytes. Packets with full data payloads constitute 3% and 10% in upstream traffic and downstream traffic, respectively. Despite the significant difference in packet size distribution, all four data sets have similar Hurst values. The Hurst alone does not properly explain the stochastic characteristics of the underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method is computationally more efficient, FARIMA exhibits superior performance in accurately modeling the underlying traffic. [ABSTRACT FROM AUTHOR]
- Published
- 2009
7. Using Digital Filtration for Hurst Parameter Estimation.
- Author
-
Procháska, Ján and Vargic, Radoslav
- Subjects
DIGITAL filters (Mathematics) ,DIGITAL electronics ,FILTERS (Mathematics) ,PARAMETER estimation ,ESTIMATION theory ,STOCHASTIC systems - Abstract
We present a new method to estimate the Hurst parameter. The method exploits the form of the autocorrelation function for second-order self-similar processes and is based on one-pass digital filtration. We compare the performance and properties of the new method with that of the most common methods. [ABSTRACT FROM AUTHOR]
- Published
- 2009
8. A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence.
- Author
-
Sun, Wei, Rachev, Svetlozar, Fabozzi, Frank, and Kalev, Petko
- Subjects
INTERNATIONAL markets ,ECONOMIC models ,EQUITY (Law) ,PORTFOLIO management (Investments) ,RANDOM noise theory ,DISTRIBUTION (Probability theory) - Abstract
Analyzing equity market co-movements is important for risk diversification of an international portfolio. Copulas have several advantages compared to the linear correlation measure in modeling co-movement. This paper introduces a copula ARMA-GARCH model for analyzing the co-movement of international equity markets. The model is implemented with an ARMA-GARCH model for the marginal distributions and a copula for the joint distribution. After goodness of fit testing, we find that the Student’s t copula ARMA(1,1)-GARCH(1,1) model with fractional Gaussian noise is superior to alternative models investigated in our study where we model the simultaneous co-movement of nine international equity market indexes. This model is also suitable for capturing the long-range dependence and tail dependence observed in international equity markets. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
9. ON THE AUTOMATIC SELECTION OF THE ONSET OF SCALING.
- Author
-
Veitch, Darryl and Abry, Patrice
- Subjects
- *
SCALING laws (Statistical physics) , *WAVELETS (Mathematics) , *REGRESSION analysis , *SELF-similar processes , *RANDOM noise theory - Abstract
A method is developed for the automatic detection of the onset of scaling for long-range dependent (LRD) time series and other asymptotically scale-invariant processes. Based on wavelet techniques, it provides the lower cutoff scale for the regression that yields the scaling exponent. The method detects the onset of scaling through the dramatic improvement of a goodness-of-fit statistic taken as a function of this lower cutoff scale. It relies on qualitative features of the goodness-of-fit statistic and on features of the wavelet analysis. The method is easy to implement, appropriate for large data sets and highly robust. It is tested against 34 time series models and found to perform very well. Examples involving telecommunications data are presented. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
10. Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths.
- Author
-
Coeurjolly, Jean-François
- Abstract
This paper develops a class of consistent estimators of the parameters of a fractional Brownian motion based on the asymptotic behavior of the k-th absolute moment of discrete variations of its sampled paths over a discrete grid of the interval [0,1]. We derive explicit convergence rates for these types of estimators, valid through the whole range 0 < H < 1 of the self-similarity parameter. We also establish the asymptotic normality of our estimators. The effectiveness of our procedure is investigated in a simulation study. [ABSTRACT FROM AUTHOR]
- Published
- 2001
- Full Text
- View/download PDF
11. Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion.
- Author
-
Meyer, Yves, Sellan, Fabrice, and Taqqu, Murad
- Abstract
We provide an almost sure convergent expansion of fractional Brownian motion in wavelets which decorrelates the high frequencies. Our approach generalizes Lévy's midpoint displacement technique which is used to generate Brownian motion. The low-frequency terms in the expansion involve an independent fractional Brownian motion evaluated at discrete times or, alternatively, partial sums of a stationary fractional ARIMA time series. The wavelets fill in the gaps and provide the necessary high frequency corrections. We also obtain a way of constructing an arbitrary number of non-Gaussian continuous time processes whose second order properties are the same as those of fractional Brownian motion. [ABSTRACT FROM AUTHOR]
- Published
- 1999
- Full Text
- View/download PDF
12. The design and evaluation of the Simple Self-Similar Sequences Generator
- Author
-
Inácio, Pedro R.M., Lakic, Branka, Freire, Mário M., Pereira, Manuela, and Monteiro, Paulo P.
- Subjects
- *
APPROXIMATION theory , *RANDOM number generators , *ALGORITHMS , *FRACTIONAL calculus , *WIENER processes , *COMPUTER simulation , *WAVELETS (Mathematics) , *COMPUTATIONAL complexity - Abstract
Abstract: This paper describes a new algorithm for the generation of pseudo random numbers with approximate self-similar structure. The Simple Self-Similar Sequences Generator (4SG) elaborates on an intuitive approach to obtain a fast and accurate procedure, capable of reproducing series of points exhibiting the property of persistence and anti-persistence. 4SG has a computational complexity of and memory requirements of the order of , where is the number of points to be generated. The accuracy of the algorithm is evaluated by means of computer-based simulations, recurring to several Hurst parameter estimators, namely Variance Time (VT) and the Wavelets-based estimator. The Hosking and the Wavelets-based methods for the generation of self-similar series were submitted to the same tests the 4SG was analysed with, providing for a basis for comparison of several performance aspects of the algorithm. Results show that the proposal embodies a good candidate not only for on-demand emulation of arbitrarily long self-similar sequences, but also for fast and efficient online simulations. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
13. Two approximation methods to synthesize the power spectrum of fractional Gaussian noise
- Author
-
Ledesma, Sergio, Liu, Derong, and Hernández, Donato
- Subjects
- *
SPECTRUM analysis , *MECHANICAL movements , *TRANSPORTATION , *STATISTICS - Abstract
Abstract: The simplest models with long-range dependence (LRD) are self-similar processes. Self-similar processes have been formally considered for modeling packet traffic in communication networks. The fractional Gaussian noise (FGN) is a proper example of exactly self-similar processes. Several numeric approximation methods are considered and reviewed, two methods are found that are able to provide a better accuracy and less running time than previous approximation methods for synthesizing the power spectrum of FGN. The first method is based on a second-order approximation. It is demonstrated that a parabolic curve can be indirectly used to approximate the power spectrum of FGN. The second method is based on cubic splines. Despite the fact that splines cannot be used directly to approximate the power spectrum of FGN, they can, however, considerably simplify the calculations while maintaining high accuracy. Both of the methods proposed can be used to estimate the Hurst parameter using Whittle''s estimator. Additionally, they can be used on synthesis of LRD sequences. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
14. Long-Range Dependent Traffic Classification with Convolutional Neural Networks Based on Hurst Exponent Analysis.
- Author
-
Filus, Katarzyna, Domański, Adam, Domańska, Joanna, Marek, Dariusz, and Szyguła, Jakub
- Subjects
CONVOLUTIONAL neural networks ,SIGNAL convolution ,INTERNET traffic ,RANDOM noise theory ,EXPONENTS ,PARETO distribution - Abstract
The paper examines the ability of neural networks to classify Internet traffic data in terms of self-similarity expressed by the Hurst exponent. Fractional Gaussian noise is used for the generation of synthetic data for modeling the genuine ones. It is presented that the trained model is capable of classifying the synthetic data obtained from the Pareto distribution and the real traffic data. We present the results of training for different optimizers of the cost function and a different number of convolutional layers in the neural network. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
15. A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence
- Author
-
Wei Sun, Svetlozar T. Rachev, Frank J. Fabozzi, Petko S. Kalev, Sun, Wei, Rachev, Svetlozar, Fabozzi, Frank J, and Kalev, Petko Stefanov
- Subjects
Statistics and Probability ,Economics and Econometrics ,High-frequency data ,Copula (linguistics) ,Equity (finance) ,Diversification (finance) ,Tail dependence ,Self-similarity ,Mathematics (miscellaneous) ,Copula ,Goodness of fit ,Joint probability distribution ,Economics ,Econometrics ,Multivariate t-distribution ,Marginal distribution ,Social Sciences (miscellaneous) ,Fractional Gaussian noise - Abstract
Analyzing equity market co-movements is important for risk diversification of an international portfolio. Copulas have several advantages compared to the linear correlation measure in modeling co-movement. This paper introduces a copula ARMA-GARCH model for analyzing the co-movement of international equity markets. The model is implemented with an ARMA-GARCH model for the marginal distributions and a copula for the joint distribution. After goodness of fit testing, we find that the Student’s t copula ARMA(1,1)-GARCH(1,1) model with fractional Gaussian noise is superior to alternative models investigated in our study where we model the simultaneous co-movement of nine international equity market indexes. This model is also suitable for capturing the long-range dependence and tail dependence observed in international equity markets.
- Published
- 2008
- Full Text
- View/download PDF
16. On Stochastic Models of Internet Traffic
- Author
-
Tadeusz Czachórski, Joanna Domańska, and Michele Pagano
- Subjects
Computer science ,Stochastic modelling ,Real data sets ,Markov modulated Poisson process ,Internet traffic engineering ,Markov model ,Internet traffic ,Long Range Dependence, self-similarity, Estimation of the Hurst parameter, Markov LRD models, Hidden Markov models ,Numerical techniques ,Computer Science::Networking and Internet Architecture ,Estimation of the Hurst parameter ,Hidden Markov models ,Hidden Markov model ,Queueing theory, Stochastic systems, Fractional Gaussian noise, Internet traffic, Long range dependence, Markov model, Markov modulated Poisson process, Numerical techniques, Real data sets ,Traffic generation model ,Fractional Gaussian noise ,Queueing theory ,Stochastic systems ,Markov chain ,self-similarity ,Markov LRD models ,Long Range Dependence ,Algorithm - Abstract
The paper discusses various models of self-similar Internet traffic and techniques for estimating the intensity of Long-Range Dependence (LRD). In the experimental part real data sets collected in IITiS PAN are used together with synthetic LRD flows generated using Fractional Gaussian noise and Markov modulated Poisson processes. We are especially interested in Markov models since they can be incorporated in Markov queueing models, for which powerful analytical and numerical techniques are available.
- Published
- 2015
17. Contribution to the wavelet theory: Application to edge plasma turbulence in tokamaks and to dimensional measurement of targets
- Author
-
Scipioni, Angel, Laboratoire d'Instrumentation Electronique de Nancy (LIEN), Université Henri Poincaré - Nancy 1 (UHP), Centre de recherche de l'armée de l'air (CReA), Armée de l'air et de l'espace, Université Henri Poincaré - Nancy 1, Patrick Schweitzer, and UL, Thèses
- Subjects
Analyse des fluctuations redressées ,Moments ,Décomposition modale empirique ,Filtres frontières ,Heisenberg uncertainty principle ,Wavelets ,Regularity ,Plasma ,[SPI]Engineering Sciences [physics] ,Orthogonalisation ,Wavelet function ,Ondelettes ,Fonction d'ondelette ,Details ,Complexité ,Fractional Gaussian noise ,Support compact ,Mouvement Brownien fractionnaire ,Méthode R/S ,Vanishing moments ,Approximations ,Coefficients de Daubechies ,[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM] ,Symétrisation ,Pavage temps-fréquence ,Self-similarity ,Bruit Gaussien fractionnaire ,Daubechies coefficients ,Empirical Modal Decomposition ,Precursor ,Auto-similarité ,Compact support ,Fractal ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Analyse dimensionnelle ,[SPI] Engineering Sciences [physics] ,Gram Schmidt ,QMF filters ,Time-frequency tiles ,Fractional Brownian motion ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,R/S method ,Fonction d'échelle ,Ultrasound ,Précurseur ,Régularité ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,Boundary filters ,Plasmas (gaz ionisés) -- Turbulence ,Complexity ,Algorithme de Mallat ,Filtre QMF ,Orthogonalization ,Scaling function ,Analyse ,Convolution ,Ultrason ,Decimation ,Principe d'incertitude de Heisenberg ,Resolution ,Reconstruction ,Analysis ,Mirroring ,Detrended fluctuations Analysis ,Mallat algorithm - Abstract
The necessary scale-based representation of the world leads us to explain why the wavelet theory is the best suited formalism. Its performances are compared to other tools: R/S analysis and empirical modal decomposition method (EMD). The great diversity of analyzing bases of wavelet theory leads us to propose a morphological approach of the analysis. The study is organized into three parts. The first chapter is dedicated to the constituent elements of wavelet theory. Then we will show the surprising link existing between recurrence concept and scale analysis (Daubechies polynomials) by using Pascal's triangle. A general analytical expression of Daubechies' filter coefficients is then proposed from the polynomial roots. The second chapter is the first application domain. It involves edge plasmas of tokamak fusion reactors. We will describe how, for the first time on experimental signals, the Hurst coefficient has been measured by a wavelet-based estimator. We will detail from fbm-like processes (fractional Brownian motion), how we have established an original model perfectly reproducing fBm and fGn joint statistics that characterizes magnetized plasmas. Finally, we will point out the reasons that show the lack of link between high values of the Hurst coefficient and possible long correlations. The third chapter is dedicated to the second application domain which is relative to the backscattered echo analysis of an immersed target insonified by an ultrasonic plane wave. We will explain how a morphological approach associated to a scale analysis can extract the diameter information, La nécessaire représentation en échelle du monde nous amène à expliquer pourquoi la théorie des ondelettes en constitue le formalisme le mieux adapté. Ses performances sont comparées à d'autres outils : la méthode des étendues normalisées (R/S) et la méthode par décomposition empirique modale (EMD).La grande diversité des bases analysantes de la théorie des ondelettes nous conduit à proposer une approche à caractère morphologique de l'analyse. L'exposé est organisé en trois parties.Le premier chapitre est dédié aux éléments constitutifs de la théorie des ondelettes. Un lien surprenant est établi entre la notion de récurrence et l'analyse en échelle (polynômes de Daubechies) via le triangle de Pascal. Une expression analytique générale des coefficients des filtres de Daubechies à partir des racines des polynômes est ensuite proposée.Le deuxième chapitre constitue le premier domaine d'application. Il concerne les plasmas de bord des réacteurs de fusion de type tokamak. Nous exposons comment, pour la première fois sur des signaux expérimentaux, le coefficient de Hurst a pu être mesuré à partir d'un estimateur des moindres carrés à ondelettes. Nous détaillons ensuite, à partir de processus de type mouvement brownien fractionnaire (fBm), la manière dont nous avons établi un modèle (de synthèse) original reproduisant parfaitement la statistique mixte fBm et fGn qui caractérise un plasma de bord. Enfin, nous explicitons les raisons nous ayant amené à constater l'absence de lien existant entre des valeurs élevées du coefficient d'Hurst et de supposées longues corrélations.Le troisième chapitre est relatif au second domaine d'application. Il a été l'occasion de mettre en évidence comment le bien-fondé d'une approche morphologique couplée à une analyse en échelle nous ont permis d'extraire l'information relative à la taille, dans un écho rétrodiffusé d'une cible immergée et insonifiée par une onde ultrasonore
- Published
- 2010
18. Using Digital Filtration for Hurst Parameter Estimation
- Author
-
J. Prochaska and R. Vargic
- Subjects
Self-similarity ,Hurst parameter ,fractional Gaussian noise ,autocorrelation function ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,lcsh:TK1-9971 - Abstract
We present a new method to estimate the Hurst parameter. The method exploits the form of the autocorrelation function for second-order self-similar processes and is based on one-pass digital filtration. We compare the performance and properties of the new method with that of the most common methods.
- Published
- 2009
19. A new stochastic process to model Heart Rate series during exhaustive run and an estimator of its fractality parameter
- Author
-
Bardet, Jean-Marc, Billat, Véronique, Kammoun, Imen, Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM), Université Paris 1 Panthéon-Sorbonne (UP1), Laboratoire d'Etude de la PHysiologie de l'Exercice (LEPHE), and Université d'Évry-Val-d'Essonne (UEVE)
- Subjects
FOS: Computer and information sciences ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,Wavelet analysis ,[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] ,Statistics - Applications ,Self-similarity ,Methodology (stat.ME) ,Hurst parameter ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Detrended fluctuation analysis ,Heart rate time series ,Applications (stat.AP) ,Statistics - Methodology ,Long-range dependence processes ,Fractional Gaussian noise - Abstract
International audience; In order to interpret and explain the physiological signal behaviors, it can be interesting to find some constants among the fluctuations of these data during all the effort or during different stages of the race (which can be detected using a change points detection method). Several recent papers have proposed the long-range dependence (Hurst) parameter as such a constant. However, their results induce two main problems. Firstly, DFA method is usually applied for estimating this parameter. Clearly, such a method does not provide the most efficient estimator and moreover it is not at all robust even in the case of smooth trends. Secondly, this method often gives estimated Hurst parameters larger than $1$, which is the larger possible value for long memory stationary processes. In this article we propose solutions for both these problems and we define a new model allowing such estimated parameters.
- Published
- 2008
- Full Text
- View/download PDF
20. Modélisation et détection de ruptures des signaux physiologiques issus de compétitions d'endurance
- Author
-
Kammoun, Imen, Statistique Appliquée et MOdélisation Stochastique (SAMOS), Université Paris 1 Panthéon-Sorbonne (UP1), Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Université Panthéon-Sorbonne - Paris I, and Jean-Marc Bardet(Jean-Marc.Bardet@univ-paris1.fr)
- Subjects
Detrended fluctuation analysis method (DFA) ,Long range dependence ,Paramètre de Hurst parameter ,Abrubt change detection ,Wavelet analysis ,Bruit gaussien fractionnaire ,Processus à longue mémoire ,Analyse des fluctuations redressées (DFA) ,Self-similarity ,Hurst parameter ,Analyse par ondelettes ,Heart Rate ,Détection de ruptures ,[MATH]Mathematics [math] ,Processus auto-similaires ,Fractional Gaussian noise ,Fréquences cardiaques - Abstract
This work focuses on the modeling and the estimation of relevant parameters characterizing instantaneous heart rate (HR) signals. We choose to focus especially in an exponent that can be called "Fractal", which indicates the local regularity of the path and the dependency between data. The asymptotic properties of the DFA (Detrended Fluctuation Analysis) function and the deduced estimator of H are studied in the case of fractional Gaussian noise (FGN) and extended to a general class of stationary semi-parametric long-range dependent processes with or without trend. We show that this method is not at all robust. We propose the modeling of HR data with a generalization of FGN, called locally fractional Gaussian noise. Such stationary process is built from a parameter called of local fractality which is a kind of Hurst parameter (that may take values in IR) in restricted band frequency. The estimation of local fractality parameter and also the construction of goodness-of-fit test can be made with wavelet analysis. We also show the relevance of model and an evolution of the parameter during the race. Then, change detection in this parameter can be extremely meaningful. We propose a method detecting multiple abrupt changes of long memory parameter (respectively self-similarity, local fractality). From a wavelet analysis, an estimator of the change points is proved to satisfy a limit theorem. A central limit theorem is established for the estimator of each parameter and a goodness-of-fit test is also built in each zona where the parameter does not change. Finally, we show the same evolution of local fractality parameter relating to HR time series.; Ce travail de thèse porte sur la modélisation et l'estimation de paramètres pertinents pour les signaux de fréquences cardiaques (FC) instantanées. Nous nous intéressons à un paramètre (appelé grossièrement "fractal"), qui témoigne de la régularité locale de la trajectoire et de la dépendance entre les données. Les propriétés asymptotiques de la fonction DFA (Detrended Fluctuation Analysis) et de l'estimateur de H sont étudiées pour le bruit gaussien fractionnaire (FGN) et plus généralement pour une classe semi-paramétrique de processus stationnaires à longue mémoire avec ou sans tendance. On montre que cette méthode n'est pas robuste. On propose la modélisation des séries de FC par une généralisation du FGN, appelée bruit gaussien localement fractionnaire. Un tel processus stationnaire est construit à partir du paramètre dit de fractalité locale (une sorte de paramètre de Hurst avec des valeurs dans IR) sur une bande de fréquences. L'estimation du paramètre est faite par une analyse par ondelettes, tout comme le test d'adéquation. On montre la pertinence du modèle et une évolution du paramètre pendant la course. Une détection des changements de ce paramètre pourrait être extrêmement appropriée. On propose alors une méthode de détection de multiples ruptures du paramètre de longue mémoire (respectivement d'autosimilarité, de fractalité locale). Un estimateur des points de changements est construit, il vérifie un théorème limite. Un théorème de la limite centrale est établi pour l'estimateur des paramètres et un test d'ajustement est mis en place dans chaque zone où le paramètre est inchangé. Enfin, on montre la même évolution du paramètre de fractalité locale sur les FC.
- Published
- 2007
21. Modeling and abrupt change detection in physiological signal recorded during endurance competition
- Author
-
Kammoun, Imen, Statistique Appliquée et MOdélisation Stochastique (SAMOS), Université Paris 1 Panthéon-Sorbonne (UP1), Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Université Panthéon-Sorbonne - Paris I, and Jean-Marc Bardet(Jean-Marc.Bardet@univ-paris1.fr)
- Subjects
Detrended fluctuation analysis method (DFA) ,Long range dependence ,Paramètre de Hurst parameter ,Abrubt change detection ,Wavelet analysis ,Bruit gaussien fractionnaire ,Processus à longue mémoire ,Analyse des fluctuations redressées (DFA) ,Self-similarity ,Hurst parameter ,Analyse par ondelettes ,Heart Rate ,Détection de ruptures ,[MATH]Mathematics [math] ,Processus auto-similaires ,Fractional Gaussian noise ,Fréquences cardiaques - Abstract
This work focuses on the modeling and the estimation of relevant parameters characterizing instantaneous heart rate (HR) signals. We choose to focus especially in an exponent that can be called "Fractal", which indicates the local regularity of the path and the dependency between data. The asymptotic properties of the DFA (Detrended Fluctuation Analysis) function and the deduced estimator of H are studied in the case of fractional Gaussian noise (FGN) and extended to a general class of stationary semi-parametric long-range dependent processes with or without trend. We show that this method is not at all robust. We propose the modeling of HR data with a generalization of FGN, called locally fractional Gaussian noise. Such stationary process is built from a parameter called of local fractality which is a kind of Hurst parameter (that may take values in IR) in restricted band frequency. The estimation of local fractality parameter and also the construction of goodness-of-fit test can be made with wavelet analysis. We also show the relevance of model and an evolution of the parameter during the race. Then, change detection in this parameter can be extremely meaningful. We propose a method detecting multiple abrupt changes of long memory parameter (respectively self-similarity, local fractality). From a wavelet analysis, an estimator of the change points is proved to satisfy a limit theorem. A central limit theorem is established for the estimator of each parameter and a goodness-of-fit test is also built in each zona where the parameter does not change. Finally, we show the same evolution of local fractality parameter relating to HR time series.; Ce travail de thèse porte sur la modélisation et l'estimation de paramètres pertinents pour les signaux de fréquences cardiaques (FC) instantanées. Nous nous intéressons à un paramètre (appelé grossièrement "fractal"), qui témoigne de la régularité locale de la trajectoire et de la dépendance entre les données. Les propriétés asymptotiques de la fonction DFA (Detrended Fluctuation Analysis) et de l'estimateur de H sont étudiées pour le bruit gaussien fractionnaire (FGN) et plus généralement pour une classe semi-paramétrique de processus stationnaires à longue mémoire avec ou sans tendance. On montre que cette méthode n'est pas robuste. On propose la modélisation des séries de FC par une généralisation du FGN, appelée bruit gaussien localement fractionnaire. Un tel processus stationnaire est construit à partir du paramètre dit de fractalité locale (une sorte de paramètre de Hurst avec des valeurs dans IR) sur une bande de fréquences. L'estimation du paramètre est faite par une analyse par ondelettes, tout comme le test d'adéquation. On montre la pertinence du modèle et une évolution du paramètre pendant la course. Une détection des changements de ce paramètre pourrait être extrêmement appropriée. On propose alors une méthode de détection de multiples ruptures du paramètre de longue mémoire (respectivement d'autosimilarité, de fractalité locale). Un estimateur des points de changements est construit, il vérifie un théorème limite. Un théorème de la limite centrale est établi pour l'estimateur des paramètres et un test d'ajustement est mis en place dans chaque zone où le paramètre est inchangé. Enfin, on montre la même évolution du paramètre de fractalité locale sur les FC.
- Published
- 2007
22. Semi-parametric estimation of the long-range dependence parameter : A survey
- Author
-
Bardet, Jean-Marc, Philippe, Anne, Oppenheim, Georges, Taqqu, Murad, Stoev, Stilan, Lang, Gabriel, Statistique Appliquée et MOdélisation Stochastique (SAMOS), Université Paris 1 Panthéon-Sorbonne (UP1), Modélisation Appliquée, Trajectoires Institutionnelles et Stratégies Socio-Économiques (MATISSE - UMR 8595), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé - UMR 8524 (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics of Boston University (DEPARTMENT OF MATHEMATICS), Boston University [Boston] (BU), Laboratoire de Gestion du Risque En Sciences de l'Environnement (GRESE), Ecole Nationale du Génie Rural, des Eaux et des Forêts (ENGREF), and Laboratoire Paul Painlevé (LPP)
- Subjects
self-similarity ,estimation ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,fractional Gaussian noise ,time series ,FARIMA - Abstract
In semi-parametric models, the long-range dependence parameter is estimated without assuming that the short-range dependence structure of the covariance function is known. We review some of the estimation methods and present new ones which have not been tested before on simulated data.
- Published
- 2003
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.