1. Integrated Proteomics and Metabolomics Analysis Highlights Correlative Metabolite-Protein Networks in Soybean Seeds Subjected to Warm-Water Soaking.
- Author
-
Min CW, Hyeon H, Gupta R, Park J, Cheon YE, Lee GH, Jang JW, Ryu HW, Lee BW, Park SU, Kim Y, Kim JK, and Kim ST
- Subjects
- Food Handling, Metabolomics, Proteomics, Seeds chemistry, Seeds genetics, Soybean Proteins genetics, Soybean Proteins metabolism, Glycine max genetics, Glycine max metabolism, Temperature, Water metabolism, Seeds metabolism, Soybean Proteins chemistry, Glycine max chemistry
- Abstract
Soaking of soybean seeds is a prerequisite for the production of soy foods, and it has been shown that the extent of water absorbed during different imbibition conditions directly affects the quality of the subsequent soybean seed products by yet unknown mechanisms. In order to elucidate the molecular changes in soybean seeds during different soaking temperatures, we performed an integrated proteomics and metabolomics analysis of seeds soaked at 4, 25, and 55 °C. Proteomics analysis revealed that various enzymes related to carbohydrate and protein hydrolysis were activated in soybean seeds during water soaking at 55 °C. Interestingly, results obtained from this integrated proteomics and metabolomics study showed changes in various metabolites, including isoflavones, amino acids, and sugars, that were positively correlated with proteome changes occurring upon soaking at 55 °C. Furthermore, soaking of soybean seeds at 55 °C resulted in degradation of indigestible anti-nutrients such as raffinose oligosaccharides. Taken together, our results suggest that the seed soaking at a high temperature (55 °C) increases the nutritional value of soybean seeds by decreasing the contents of some of the common anti-nutrients.
- Published
- 2020
- Full Text
- View/download PDF