1. Enzymatic solubilization of arabinoxylans from native, extruded, and high-shear-treated rye bran by different endo-xylanases and other hydrolyzing enzymes.
- Author
-
Figueroa-Espinoza MC, Poulsen C, Borch Søe J, Zargahi MR, and Rouau X
- Subjects
- Food Handling methods, Hydrolysis, Solubility, Dietary Fiber analysis, Endo-1,4-beta Xylanases metabolism, Secale chemistry, Xylans metabolism
- Abstract
The overall objective of this research was to find a new way to valorize rye bran, by producing a gellifier from the enzymatic solubilization of arabinoxylans (AX). The effects of three pure endo-xylanases from Aspergillus niger (Xyl-1), Talaromyces emersonii (Xyl-2), and Bacillus subtilis (Xyl-3) and of Grindamyl S100 (GS100), a commercial enzyme preparation containing a Xyl-1 type endo-xylanase, were tested on rye bran to study the solubilization of water-unextractable arabinoxylans (WUAX). Eight different extrusion-treated rye brans were also used as substrates to find the best physical treatment to facilitate enzymatic arabinoxylan (AX) solubilization. Arabinoxylans were better solubilized from the bran extruded at high temperature using Xyl-3. This enzyme was then tested in combination with pure (1,4)-beta-d-arabinoxylan arabinofuranohydrolase (AXH) and endo-beta-d-glucanase or ferulic acid esterase (FAE), from A. niger. Only beta-glucanase in combination with Xyl-3 improved the AX extraction, but it did not have a marked effect on the viscosity of the extracts. Xyl-3 was then tested on a high-shear-treated rye bran, and results were compared to those obtained with the high-temperature-extruded rye bran. The high-shear treatment did not improve the bran AX enzymatic solubilization. The combination of FAE with Xyl-1 or Xyl-3 did not improve the AX extraction from untreated and high-shear-treated rye bran. Finally, to study the gelation capacity of the enzymatically solubilized AX, the effect of the hydrogen peroxide/horseradish peroxidase (H(2)O(2)/POD) was tested on the Xyl-3 high-temperature-extruded bran extracts. Solubilized AX did not gel in the presence of the oxidizing system.
- Published
- 2004
- Full Text
- View/download PDF