6 results on '"Pantel Vokonas"'
Search Results
2. The role of solar and geomagnetic activity in endothelial activation and inflammation in the NAS cohort.
- Author
-
Jessica E Schiff, Carolina L Z Vieira, Eric Garshick, Veronica Wang, Annelise Blomberg, Diane R Gold, Joel Schwartz, Samantha M Tracy, Pantel Vokonas, and Petros Koutrakis
- Subjects
Medicine ,Science - Abstract
This study investigated the associations between solar and geomagnetic activity and circulating biomarkers of systemic inflammation and endothelial activation in the Normative Aging Study (NAS) cohort. Mixed effects models with moving day averages from day 0 to day 28 were used to study the associations between solar activity (sunspot number (SSN), interplanetary magnetic field (IMF)), geomagnetic activity (planetary K index (Kp index), and various inflammatory and endothelial markers. Biomarkers included intracellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), C-reactive protein (CRP), and fibrinogen. After adjusting for demographic and meteorological variables, we observed significant positive associations between sICAM-1 and sVCAM-1 concentrations and solar and geomagnetic activity parameters: IMF, SSN, and Kp. Additionally, a negative association was observed between fibrinogen and Kp index and a positive association was observed for CRP and SSN. These results demonstrate that solar and geomagnetic activity might be upregulating endothelial activation and inflammation.
- Published
- 2022
- Full Text
- View/download PDF
3. DunedinPACE, a DNA methylation biomarker of the pace of aging
- Author
-
Daniel W Belsky, Avshalom Caspi, David L Corcoran, Karen Sugden, Richie Poulton, Louise Arseneault, Andrea Baccarelli, Kartik Chamarti, Xu Gao, Eilis Hannon, Hona Lee Harrington, Renate Houts, Meeraj Kothari, Dayoon Kwon, Jonathan Mill, Joel Schwartz, Pantel Vokonas, Cuicui Wang, Benjamin S Williams, and Terrie E Moffitt
- Subjects
aging ,geroscience ,biological aging ,gerontology ,DNA methylation ,epigenetic ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Background: Measures to quantify changes in the pace of biological aging in response to intervention are needed to evaluate geroprotective interventions for humans. Previously, we showed that quantification of the pace of biological aging from a DNA-methylation blood test was possible (Belsky et al., 2020). Here, we report a next-generation DNA-methylation biomarker of Pace of Aging, DunedinPACE (for Pace of Aging Calculated from the Epigenome). Methods: We used data from the Dunedin Study 1972–1973 birth cohort tracking within-individual decline in 19 indicators of organ-system integrity across four time points spanning two decades to model Pace of Aging. We distilled this two-decade Pace of Aging into a single-time-point DNA-methylation blood-test using elastic-net regression and a DNA-methylation dataset restricted to exclude probes with low test-retest reliability. We evaluated the resulting measure, named DunedinPACE, in five additional datasets. Results: DunedinPACE showed high test-retest reliability, was associated with morbidity, disability, and mortality, and indicated faster aging in young adults with childhood adversity. DunedinPACE effect-sizes were similar to GrimAge Clock effect-sizes. In analysis of incident morbidity, disability, and mortality, DunedinPACE and added incremental prediction beyond GrimAge. Conclusions: DunedinPACE is a novel blood biomarker of the pace of aging for gerontology and geroscience. Funding: This research was supported by US-National Institute on Aging grants AG032282, AG061378, AG066887, and UK Medical Research Council grant MR/P005918/1.
- Published
- 2022
- Full Text
- View/download PDF
4. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm
- Author
-
Daniel W Belsky, Avshalom Caspi, Louise Arseneault, Andrea Baccarelli, David L Corcoran, Xu Gao, Eiliss Hannon, Hona Lee Harrington, Line JH Rasmussen, Renate Houts, Kim Huffman, William E Kraus, Dayoon Kwon, Jonathan Mill, Carl F Pieper, Joseph A Prinz, Richie Poulton, Joel Schwartz, Karen Sugden, Pantel Vokonas, Benjamin S Williams, and Terrie E Moffitt
- Subjects
aging ,biological aging ,DNA methylation ,epigenetic ,human ,life-course ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Biological aging is the gradual, progressive decline in system integrity that occurs with advancing chronological age, causing morbidity and disability. Measurements of the pace of aging are needed as surrogate endpoints in trials of therapies designed to prevent disease by slowing biological aging. We report a blood-DNA-methylation measure that is sensitive to variation in pace of biological aging among individuals born the same year. We first modeled change-over-time in 18 biomarkers tracking organ-system integrity across 12 years of follow-up in n = 954 members of the Dunedin Study born in 1972–1973. Rates of change in each biomarker over ages 26–38 years were composited to form a measure of aging-related decline, termed Pace-of-Aging. Elastic-net regression was used to develop a DNA-methylation predictor of Pace-of-Aging, called DunedinPoAm for Dunedin(P)ace(o)f(A)ging(m)ethylation. Validation analysis in cohort studies and the CALERIE trial provide proof-of-principle for DunedinPoAm as a single-time-point measure of a person’s pace of biological aging.
- Published
- 2020
- Full Text
- View/download PDF
5. Associations between changes in city and address specific temperature and QT interval--the VA Normative Aging Study.
- Author
-
Amar J Mehta, Itai Kloog, Antonella Zanobetti, Brent A Coull, David Sparrow, Pantel Vokonas, and Joel Schwartz
- Subjects
Medicine ,Science - Abstract
The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men.This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000-2008 (n = 743). We analyzed associations between QTc and moving averages (1-7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated.Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease.In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature-related cardiovascular morbidity and mortality in an older population.
- Published
- 2014
- Full Text
- View/download PDF
6. A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution.
- Author
-
Marie-Abele Bind, Brent Coull, Helen Suh, Robert Wright, Andrea Baccarelli, Pantel Vokonas, and Joel Schwartz
- Subjects
Medicine ,Science - Abstract
Air pollution has been associated with increased systemic inflammation markers. We developed a new pathway analysis approach to investigate whether gene variants within relevant pathways (oxidative stress, endothelial function, and metal processing) modified the association between particulate air pollution and fibrinogen, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Our study population consisted of 822 elderly participants of the Normative Aging Study (1999-2011). To investigate the role of biological mechanisms and to reduce the number of comparisons in the analysis, we created pathway-specific scores using gene variants related to each pathway. To select the most appropriate gene variants, we used the least absolute shrinkage and selection operator (Lasso) to relate independent outcomes representative of each pathway (8-hydroxydeoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead for metal processing) to gene variants. A high genetic score corresponds to a higher allelic risk profile. We fit mixed-effects models to examine modification by the genetic score of the weekly air pollution association with the outcome. Among participants with higher genetic scores within the oxidative stress pathway, we observed significant associations between particle number and fibrinogen, while we did not find any association among participants with lower scores (p(interaction) = 0.04). Compared to individuals with low genetic scores of metal processing gene variants, participants with higher scores had greater effects of particle number on fibrinogen (p(interaction) = 0.12), CRP (p(interaction) = 0.02), and ICAM-1 (pinteraction = 0.08). This two-stage penalization method is easy to implement and can be used for large-scale genetic applications.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.