1. Evaluation of In Situ FAPAR Measurement Protocols Using 3D Radiative Transfer Simulations
- Author
-
Christian Lanconelli, Fabrizio Cappucci, Jennifer Susan Adams, and Nadine Gobron
- Subjects
FAPAR ,3D radiative transfer model ,raytracing ,forests ,crops ,Science - Abstract
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the bio-geophysical Essential Climate Variables assessed through remote sensing observations and distributed globally by space and environmental agencies. Any reliable remote sensing product should be benchmarked against a reference, which is normally determined by means of ground-based measurements. They should generally be aggregated spatially to be compared with remote sensing products at different resolutions. In this work, the effectiveness of various in situ sampling methods proposed to assess FAPAR from flux measurements was evaluated using a three-dimensional radiative transfer framework over eight virtual vegetated landscapes, including dense forests (leaf-on and leaf-off models), open canopies, sparse vegetation, and agricultural fields with a nominal extension of 1 hectare. The reference FAPAR value was determined by summing the absorbed PAR-equivalent photons by either all canopy components, both branches and leaves, or by only the leaves. The incoming and upwelling PAR fluxes were simulated in different illumination conditions and at a high spatial resolution (50 cm). They served to replicate in situ virtual FAPAR measurements, which were carried out using either stationary sensor networks or transects. The focus was on examining the inherent advantages and drawbacks of in situ measurement protocols against GCOS requirements. Consequently, the proficiency of each sampling technique in reflecting the distribution of incident and reflected PAR fluxes—essential for calculating FAPAR—was assessed. This study aims to support activities related to the validation of remote sensing FAPAR products by assessing the potential uncertainty associated with in situ determination of the reference values. Among the sampling schemes considered in our work, the cross shaped sampling schemes showed a particular efficiency in properly representing the pixel scale FAPAR over most of the scenario considered.
- Published
- 2024
- Full Text
- View/download PDF