1. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells.
- Author
-
Greco TM, Hodara R, Parastatidis I, Heijnen HF, Dennehy MK, Liebler DC, and Ischiropoulos H
- Subjects
- Amino Acid Sequence, Cells, Cultured, Cysteine chemistry, Cysteine metabolism, Humans, Mass Spectrometry, Microscopy, Electron, Transmission, Microscopy, Immunoelectron, Molecular Sequence Data, Muscle Cells chemistry, Muscle, Smooth, Vascular chemistry, Nitrogen metabolism, Peptides chemistry, Cysteine analogs & derivatives, Muscle Cells metabolism, Muscle, Smooth, Vascular metabolism, Nitrogen chemistry, Proteome chemistry, Proteome metabolism, S-Nitrosothiols chemistry, S-Nitrosothiols metabolism
- Abstract
S-nitrosylation, the selective modification of cysteine residues in proteins to form S-nitrosocysteine, is a major emerging mechanism by which nitric oxide acts as a signaling molecule. Even though nitric oxide is intimately involved in the regulation of vascular smooth muscle cell functions, the potential protein targets for nitric oxide modification as well as structural features that underlie the specificity of protein S-nitrosocysteine formation in these cells remain unknown. Therefore, we used a proteomic approach using selective peptide capturing and site-specific adduct mapping to identify the targets of S-nitrosylation in human aortic smooth muscle cells upon exposure to S-nitrosocysteine and propylamine propylamine NONOate. This strategy identified 20 unique S-nitrosocysteine-containing peptides belonging to 18 proteins including cytoskeletal proteins, chaperones, proteins of the translational machinery, vesicular transport, and signaling. Sequence analysis of the S-nitrosocysteine-containing peptides revealed the presence of acid/base motifs, as well as hydrophobic motifs surrounding the identified cysteine residues. High-resolution immunogold electron microscopy supported the cellular localization of several of these proteins. Interestingly, seven of the 18 proteins identified are localized within the ER/Golgi complex, suggesting a role for S-nitrosylation in membrane trafficking and ER stress response in vascular smooth muscle.
- Published
- 2006
- Full Text
- View/download PDF