4 results on '"Malik WA"'
Search Results
2. Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review
- Author
-
Asad Ullah, Jing Mu, Fenghuan Wang, Malik Wajid Hussain Chan, Xian Yin, Yonghong Liao, Zulfiqar Ali Mirani, Syed Sebt-e-Hassan, Sadar Aslam, Muhammad Naveed, Muhammad Naseem Khan, Zakia Khatoon, and Mohib Reza Kazmi
- Subjects
selenium nanoparticles ,anticancer ,probiotic bacteria ,breast ,lungs ,prostate cancer ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.
- Published
- 2022
- Full Text
- View/download PDF
3. Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment
- Author
-
Abida Rani, Muhammad Uzair, Shehbaz Ali, Muhammad Qamar, Naveed Ahmad, Malik Waseem Abbas, and Tuba Esatbeyoglu
- Subjects
cytotoxicity ,hepatoprotective effects ,HeLa cancer ,inflammation ,mass spectrometry ,oxidation ,Therapeutics. Pharmacology ,RM1-950 - Abstract
An estimated 450 species of Dryopteris in the Dryoperidaceae family grow in Japan, North and South Korea, China, Pakistan, and Kashmir. This genus has been reported to have biological capabilities; however, research has been conducted on Dryopteris juxtapostia. Therefore, with the present study, we aimed to exploring the biological potential of D. juxtapostia root and shoot extracts. We extracted dichloromethane and methanol separately from the roots and shoots of D. juxtapostia. Antioxidant activity was determined using DPPH, FRAP, and H2O2 assays, and anti-inflammatory activities were evaluated using both in vitro (antiurease activity) and in vivo (carrageenan- and formaldehyde-induced paw edema) studies. Toxicity was evaluated by adopting a brine shrimp lethality assay followed by determination of cytotoxic activity using an MTT assay. Hepatoprotective effects of active crude extracts were examined in rats. Activity-bearing compounds were tentatively identified using LC-ESI-MS/MS analysis. Results suggested that D. juxtapostia root dichloromethane extract exhibited better antioxidant (DPPH, IC50 of 42.0 µg/mL; FRAP, 46.2 mmol/g; H2O2, 71% inhibition), anti-inflammatory (urease inhibition, 56.7% at 50 µg/mL; carrageenan-induced edema inhibition, 61.7% at 200 µg/mL; formaldehyde-induced edema inhibition, 67.3% at 200 µg/mL), brine shrimp % mortality (100% at 1000 µg/mL), and cytotoxic (HeLa cancer, IC50 of 17.1 µg/mL; prostate cancer (PC3), IC50 of 45.2 µg/mL) effects than D. juxtapostia root methanol extract. D. juxtapostia shoot dichloromethane and methanol extracts exhibited non-influential activity in all biological assays and were not selected for hepatoprotective study. D. juxtapostia root methanol extract showed improvement in hepatic cell structure and low cellular infiltration but, in contrast the dichloromethane extract, did not show any significant improvement in hepatocyte morphology, cellular infiltration, or necrosis of hepatocytes in comparison to the positive control, i.e., paracetamol. LC-ESI-MS/MS analysis showed the presence of albaspidin PP, 3-methylbutyryl-phloroglucinol, flavaspidic acid AB and BB, filixic acid ABA and ABB, tris-desaspidin BBB, tris-paraaspidin BBB, tetra-flavaspidic BBBB, tetra-albaspidin BBBB, and kaempferol-3-O-glucoside in the dichloromethane extract, whereas kaempferol, catechin, epicatechin, quinic acid, liquitrigenin, and quercetin 7-O-galactoside in were detected in the methanol extract, along with all the compounds detected in the dichloromethane extract. Hence, D. juxtapostia is safe, alongside other species of this genus, although detailed safety assessment of each isolated compound is obligatory during drug discovery.
- Published
- 2022
- Full Text
- View/download PDF
4. Bioactive Compounds, Antioxidant, Anti-Inflammatory, Anti-Cancer, and Toxicity Assessment of Tribulus terrestris—In Vitro and In Vivo Studies
- Author
-
Malik Waseem Abbas, Mazhar Hussain, Saeed Akhtar, Tariq Ismail, Muhammad Qamar, Zahid Shafiq, and Tuba Esatbeyoglu
- Subjects
phytochemicals ,antioxidant ,inflammation ,cancer ,toxicity ,ESI-MS/MS ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Tribulus terrestris L. belongs to the family Zygophyllaceae and integral part of various ancient medicinal systems including Chinese, Indian, and European to combat various health ailments. The aim of the present study was to assess the phytochemical constituents, in vitro antioxidant activity using DPPH, FRAP, and H2O2 assays, in vitro anticancer activity using MTT assay, and in vitro and in vivo anti-inflammatory properties of T. terrestris. The acute and sub-acute toxicity of extracts exhibiting most biological potential was examined using murine models. Liquid–liquid partitioning followed by RP–HPLC sub-fraction of crude extract was performed. After that, ESI-MS/MS analysis was done for the timid identification of bioactive metabolites responsible for bioactivities of sub-fractions and HPLC analysis to quantify the compounds using external standards. Among all extracts, T. terrestris methanol extract was noted to hold maximum phenolic (341.3 mg GAE/g) and flavonoid (209 mg QE/g) contents, antioxidant activity in DPPH (IC50 71.4 µg/mL), FRAP (35.3 mmol/g), and H2O2 (65.3% inhibition) assays, anti-inflammatory activities in vitro at 400 µg/mL (heat-induced hemolysis, % inhibition 68.5; egg albumin denaturation, % inhibition 75.6%; serum albumin denaturation, % inhibition 80.2), and in vivo at 200 mg/kg (carrageenan-induced paw edema, % inhibition 69.3%; formaldehyde-induced paw edema, % inhibition 71.3%) and anticancer activity against breast cancer cell (MCF-7) proliferation (IC50 74.1 µg/mL). Acute and sub-acute toxicity studies recorded with no change in body weight, behavior, hematological, serum, and histopathological parameters in treated rats with T. terrestris methanol extracts when compared to control group. Fraction B obtained through liquid–liquid partitioning resulted in more bioactive potential as compared to the parent methanol extract. RP–HPLC analysis of fraction B resulted with four sub-fractions (TBTMF1-TBTMF4), wherein TBTMF3 delineated notable bioactive capabilities as compared to other fractions and parent methanol extract. ESI-MS/MS analysis of TBTMF3 resulted with tentative identification of myricetin, rutin, liquitrigenin, physcion, and protodioscin. It can be stated that T. terrestris is a potential bearing herb and findings of current study further verify the claims made in ancient medicinal systems. However, after investigation of each identified compound, it must be considered for drug discovery.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.