1. Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: A structural equation modelling better informing on hydromorphological impacts.
- Author
-
Villeneuve, B., Piffady, J., Valette, L., Souchon, Y., and Usseglio-Polatera, P.
- Subjects
- *
STREAM invertebrates , *RIVER ecology , *CARBON content of water , *STRUCTURAL equation modeling , *PARTIAL least squares regression - Abstract
The purpose of our approach was to take into account the nested spatial scales driving stream functioning in the description of pressures/ecological status links by analysing the results of a hierarchical model. The development of this model has allowed us to answer the following questions: Does the consideration of the indirect links between anthropogenic pressures and stream ecological status modify the hierarchy of pressure types impacting benthic invertebrates? Do the different nested scales play different roles in the anthropogenic pressures/ecological status relationship? Does this model lead to better understanding of the specific role of hydromorphology in the evaluation of stream ecological status? To achieve that goal, we used the Partial Least Square (PLS) path modelling method to develop a structural model linking variables describing (i) land use and hydromorphological alterations at the watershed scale, (ii) hydromorphological alterations at the reach scale, (iii) nutrients-organic matter contamination levels at the site scale, and (iv) substrate characteristics at the sampling site scale, to explain variation in values of a macroinvertebrate-based multimetric index: the French I 2 M 2 . We have highlighted the importance of land use effects exerted on both hydromorphological and chemical characteristics of streams observed at finer scales and their subsequent indirect impact on stream ecological status. Hydromorphological alterations have an effect on the substrate mosaic structure and on the concentrations of nutrients and organic matter at site scale. This result implies that stream hydromorphology can have a major indirect effect on macroinvertebrate assemblages and that the hierarchy of impacts of anthropogenic pressures on stream ecological status generally described in the literature - often determining strategic restoration priorities - has to be re-examined. Finally, the effects of nutrients and organic matter on macroinvertebrate assemblages are lower than expected when all the indirect effects of land use and hydromorphological alterations are taken into account. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF