1. Quantum–classical simulations of rhodopsin reveal excited-state population splitting and its effects on quantum efficiency
- Author
-
Xuchun Yang, Madushanka Manathunga, Samer Gozem, Jérémie Léonard, Tadeusz Andruniów, Massimo Olivucci, Bowling Green State University (BGSU), Georgia State University, University System of Georgia (USG), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Wroclaw University of Science and Technology, Università degli Studi di Siena = University of Siena (UNISI), Institut d’Etudes Avancées de l’Université de Strasbourg - Institute for Advanced Study (USIAS), Université de Strasbourg (UNISTRA), and Léonard, Jérémie
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Rhodopsin ,[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry ,Isomerism ,General Chemical Engineering ,Static Electricity ,Animals ,General Chemistry ,Amino Acid Sequence - Abstract
International audience; The activation of rhodopsin, the light-sensitive G-protein-coupled receptor responsible for dim-light vision in vertebrates, is driven by an ultrafast excited-state double-bond isomerization with a quantum efficiency of almost 70%. The origin of such light sensitivity is not understood and a key question is whether in-phase nuclear motion controls the quantum efficiency value. In this study we used hundreds of quantum-classical trajectories to show that, 15 fs after light absorption, a degeneracy between the reactive excited state and a neighbouring state causes the splitting of the rhodopsin population into subpopulations. These subpopulations propagate with different velocities and lead to distinct contributions to the quantum efficiency. We also show here that such splitting is modulated by protein electrostatics, thus linking amino acid sequence variations to quantum efficiency modulation. Finally, we discuss how such a linkage that in principle could be exploited to achieve higher quantum efficiencies would simultaneously increase the receptor thermal noise leading to a trade-off that may have played a role in rhodopsin evolution.
- Published
- 2022
- Full Text
- View/download PDF