1. Recalcitrance of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene to degradation by pure cultures of 1,1-diphenylethylene-degrading aerobic bacteria.
- Author
-
Megharaj M, Hartmans S, Engesser KH, and Thiele JH
- Subjects
- Bacteria, Aerobic growth & development, Biodegradation, Environmental, Chromatography, High Pressure Liquid, Dichlorodiphenyl Dichloroethylene metabolism, Pseudomonas fluorescens growth & development, Rhodococcus growth & development, Bacteria, Aerobic metabolism, Dichlorodiphenyl Dichloroethylene analogs & derivatives, Pseudomonas fluorescens metabolism, Rhodococcus metabolism
- Abstract
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) is the peri-chlorinated derivative of 1,1-diphenylethylene (DPE). Biodegradation of DDE and DPE by bacteria has so far not been shown. Pure cultures of aerobic bacteria involved in biodegradation of styrene and polychlorinated biphenyls (PCB) were therefore screened for their ability to degrade or cometabolize DPE and DDE. Styrene-metabolizing bacteria (Rho-dococcus strains S5 and VLB150) grew with DPE as their sole source of carbon and energy. Polychlorinated-biphenyl-degrading bacteria (Pseudomonas fluorescens and Rhodococcus globerulus) were unable to degrade DPE even in the presence of an easily utilizable cosubstrate, biphenyl. This is the first report of the utilization of DPE as sole carbon and energy source by bacteria. All the tested bacteria failed to degrade DDE when it was provided as the sole carbon source or in the presence of the respective degradable cosubstrates. DPE transformation could also be detected in cell-free extracts of Rhodococcus S5 and VLB150, but DDE was not transformed, indicating that cell wall and membrane diffusion barriers were not limiting biodegradation. The results of the present study show that, at least for some bacteria, the chlorination of DDE is the main reason for its resistance to biodegradation by styrene and DPE-degrading bacteria.
- Published
- 1998
- Full Text
- View/download PDF