1. Rhizobium hidalgonense and Rhizobium redzepovicii as faba bean (Vicia faba L.) microsymbionts in Mexican soils.
- Author
-
Rivera Ortuña FN, Guevara-Luna J, Yan J, Lopez Amezcua E, Arroyo-Herrera I, Li Y, Vásquez-Murrieta MS, Rojas Arellano D, and Wang ET
- Subjects
- Mexico, Bacterial Proteins genetics, Root Nodules, Plant microbiology, Soil chemistry, N-Acetylglucosaminyltransferases genetics, Oxidoreductases genetics, Rec A Recombinases genetics, Multigene Family, Vicia faba microbiology, Rhizobium genetics, Rhizobium isolation & purification, Rhizobium classification, Phylogeny, Soil Microbiology, Symbiosis
- Abstract
As a legume crop widely cultured in the world, faba bean (Vicia faba L.) forms root nodules with diverse Rhizobium species in different regions. However, the symbionts associated with this plant in Mexico have not been studied. To investigate the diversity and species/symbiovar affiliations of rhizobia associated with faba bean in Mexico, rhizobia were isolated from this plant grown in two Mexican sites in the present study. Based upon the analysis of recA gene phylogeny, two genotypes were distinguished among a total of 35 isolates, and they were identified as Rhizobium hidalgonense and Rhizobium redzepovicii, respectively, by the whole genomic sequence analysis. Both the species harbored identical nod gene cluster and the same phylogenetic positions of nodC and nifH. So, all of them were identified into the symbiovar viciae. As a minor group, R. hidalgonense was only isolated from slightly acid soil and R. redzepovicii was the dominant group in both the acid and neutral soils. In addition, several genes related to resistance to metals (zinc, copper etc.) and metalloids (arsenic) were detected in genomes of the reference isolates, which might offer them some adaptation benefits. As conclusion, the community composition of faba bean rhizobia in Mexico was different from those reported in other regions. Furthermore, our study identified sv. viciae as the second symbiovar in the species R. redzepovicii. These results added novel evidence about the co-evolution, diversification and biogeographic patterns of rhizobia in association with their host legumes in distinct geographic regions., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF