1. Stability and 3D-printing performance of high-internal-phase emulsions based on ultrafine soybean meal particles.
- Author
-
Liao H, Jiang T, Chen L, Wang G, Shen Q, Liu X, Ding W, and Zhu L
- Subjects
- Viscosity, Whey Proteins chemistry, Emulsions chemistry, Glycine max chemistry, Particle Size, Printing, Three-Dimensional, Rheology
- Abstract
There are numerous studies on the application of soybean whey protein in three-dimensional (3D) printing. In this study, the effects of soybean meal particles (5%, 6%, 7%, 8%, 9%, and 10%) and oil-phase concentrations (70%, 72%, 74%, 76%, and 78%) on the stability and 3D-printing performance of a soybean-meal-based high-internal-phase emulsion were investigated. The results showed that the particle size of the emulsion decreased with increasing soybean meal particle concentration, and that increasing the concentration of the oil phase improved the viscoelasticity of the emulsion. Rheological tests further showed that the higher storage modulus of the emulsion indicated better support and stability. The emulsion with 8% soybean meal-particles and 76% oil-phase concentration exhibited the best printing effect. This study provides an effective solution for the preparation of stabilized high-internal-phase emulsions of soybean meal particles suitable for 3D printing., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF