3 results on '"Carter, Geoffrey M."'
Search Results
2. Territory and population attributes affect Florida scrub‐jay fecundity in fire‐adapted ecosystems.
- Author
-
Breininger, David R., Stolen, Eric D., Carter, Geoffrey M., Legare, Stephanie A., Payne, William V., Breininger, Daniel J., Lyon, James E., Schumann, Chris D., and Hunt, Danny K.
- Subjects
FERTILITY ,ECOSYSTEMS ,ECOSYSTEM dynamics ,SOCIOBIOLOGY ,ECOLOGICAL disturbances ,POPULATION density - Abstract
Fecundity, the number of young produced by a breeding pair during a breeding season, is a primary component in evolutionary and ecological theory and applications. Fecundity can be influenced by many environmental factors and requires long‐term study due to the range of variation in ecosystem dynamics. Fecundity data often include a large proportion of zeros when many pairs fail to produce any young during a breeding season due to nest failure or when all young die independently after fledging. We conducted color banding and monthly censuses of Florida scrub‐jays (Aphelocoma coerulescens) across 31 years, 15 populations, and 761 territories along central Florida's Atlantic coast. We quantified how fecundity (juveniles/pair‐year) was influenced by habitat quality, presence/absence of nonbreeders, population density, breeder experience, and rainfall, with a zero‐inflated Bayesian hierarchical model including both a Bernoulli (e.g., brood success) and a Poisson (counts of young) submodel, and random effects for year, population, and territory. The results identified the importance of increasing "strong" quality habitat, which was a mid‐successional state related to fire frequency and extent, because strong territories, and the proportion of strong territories in the overall population, influenced fecundity of breeding pairs. Populations subject to supplementary feeding also had greater fecundity. Territory size, population density, breeder experience, and rainfall surprisingly had no or small effects. Different mechanisms appeared to cause annual variation in fecundity, as estimates of random effects were not correlated between the success and count submodels. The increased fecundity for pairs with nonbreeders, compared to pairs without, identified empirical research needed to understand how the proportion of low‐quality habitats influences population recovery and sustainability, because dispersal into low‐quality habitats can drain nonbreeders from strong territories and decrease overall fecundity. We also describe how long‐term study resulted in reversals in our understanding because of complications involving habitat quality, sociobiology, and population density. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities.
- Author
-
Breininger, David R., Nichols, James D., Duncan, Brean W., Stolen, Eric D., Carter, Geoffrey M., Hunt, Danny K., and Drese, John H.
- Subjects
ENVIRONMENTAL engineering ,FLORIDA scrub jay ,PROBABILITY theory ,HABITATS ,MARKOV processes - Abstract
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used l.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, .and can be used to assess evidence among competing ecological models that describe system dynamics. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.