1. Combining Attractants and Larvicides in Biodegradable Matrices for Sustainable Mosquito Vector Control
- Author
-
Schorkopf, Dirk Louis P., Spanoudis, Christos G., Mboera, Leonard E. G., Mafra-Neto, Agenor, Ignell, Rickard, and Dekker, Teun
- Subjects
Male ,Life Cycles ,Insecticides ,Mosquito Control ,Epidemiology ,Physiology ,Oviposition ,Disease Vectors ,Mosquitoes ,Biochemistry ,Pheromones ,Larvae ,Reproductive Physiology ,Medicine and Health Sciences ,lcsh:Public aspects of medicine ,Larvicides ,Agriculture ,Insects ,Larva ,Physical Sciences ,Emulsions ,Female ,Organic Materials ,Agrochemicals ,Research Article ,lcsh:Arctic medicine. Tropical medicine ,Arthropoda ,Materials by Structure ,Death Rates ,lcsh:RC955-962 ,Materials Science ,Bacillus thuringiensis ,Mosquito Vectors ,Population Metrics ,parasitic diseases ,Animals ,Colloids ,Pesticides ,Pest Control, Biological ,Demography ,Population Biology ,fungi ,Organisms ,Biology and Life Sciences ,lcsh:RA1-1270 ,Invertebrates ,Insect Vectors ,Waxes ,Mixtures ,People and Places ,Pest Control ,Developmental Biology - Abstract
Background There is a global need for cost-effective and environmentally friendly tools for control of mosquitoes and mosquito-borne diseases. One potential way to achieve this is to combine already available tools to gain synergistic effects to reduce vector mosquito populations. Another possible way to improve mosquito control is to extend the active period of a given control agent, enabling less frequent applications and consequently, more efficient and longer lasting vector population suppression. Methodology/principal findings We investigated the potential of biodegradable wax emulsions to improve the performance of semiochemical attractants for gravid female culicine vectors of disease, as well as to achieve more effective control of their aquatic larval offspring. As an attractant for gravid females, we selected acetoxy hexadecanolide (AHD), the Culex oviposition pheromone. As toxicant for mosquito larvae, we chose the biological larvicides Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs). These attractant and larvicidal agents were incorporated, separately and in combination, into a biodegradable wax emulsion, a commercially available product called SPLAT (Specialized Pheromone & Lure Application Technology) and SPLATbac, which contains 8.33% Bti and 8.33% Bs. Wax emulsions were applied to water surfaces as buoyant pellets of 20 mg each. Dose-mortality analyses of Culex quinquefasciatus Say larvae demonstrated that a single 20 mg pellet of a 10−1 dilution of SPLATbac in a larval tray containing 1 L of water caused 100% mortality of neonate (1st instar) larvae for at least five weeks after application. Mortality of 3rd instar larvae remained equally high with SPLATbac dilutions down to 10−2 for over two weeks post application. Subsequently, AHD was added to SPLAT (emulsion only, without Bs or Bti) to attract gravid females (SPLATahd), or together with biological larvicides to attract ovipositing females and kill emerging larvae (SPLATbacAHD, 10−1 dilution) in both laboratory and semi-field settings. The formulations containing AHD, irrespective of presence of larvicides, were strongly preferred as an oviposition substrate by gravid female mosquitoes over controls for more than two weeks post application. Experiments conducted under semi-field settings (large screened greenhouse, emulating field conditions) confirmed the results obtained in the laboratory. The combination of attractant and larvicidal agents in a single formulation resulted in a substantial increase in larval mosquito mortality when compared to formulations containing the larvicide agents alone. Conclusions/significance Collectively, our data demonstrate the potential for the effective use of wax emulsions as slow release matrices for mosquito attractants and control agents. The results indicate that the combination of an oviposition attractant with larvicides could synergize the control of mosquito disease vectors, specifically Cx. quinquefasciatus, a nuisance pest and circumtropical vector of lymphatic filariasis and encephalitis., Author Summary Traditionally, a key intervention in mosquito control is the use of insecticides against the adult stage. However, various factors limit the long-term use of these control methods, including the development of insecticide resistance, changes in mosquito biting behaviour, and concerns regarding potential negative impacts of insecticides on the environment. There is therefore a need for alternative management strategies, such as those that target aquatic life stages of mosquitoes. The objective of this study was to investigate the potential of biodegradable wax emulsions such as SPLAT for use in attracting gravid females and control of aquatic stages of culicine vectors. Culex mosquito oviposition pheromone (acetoxy hexadecanolide, AHD) was selected as an attractant, and Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs) were used as control agents. Buoyant 20 mg pellets, created by drying SPLAT dollops prior to application, were applied to water surfaces. Dose-mortality analyses of Cx. quinquefasciatus larvae demonstrated that one single pellet caused 100% mortality of first instar larvae for at least five weeks post application. Mortality of 3rd instar larvae remained equally high even at 10−2 dilutions for over two weeks post application. In addition, AHD was embedded in SPLAT to either attract gravid females (SPLATahd) or to first attract gravid females to oviposit and then to kill the resulting larval offspring (SPLATbacAHD, 10−1 dilution) in both laboratory and semi-field settings. The wax matrix containing AHD, with or without Bti and Bs, was strongly preferred as an oviposition substrate over controls for over two weeks post application. Both laboratory and semi-field experiments showed a marked increase in larval mortality effects when a semiochemical attractant and larvicides were combined, compared to matrices containing larvicides alone. These findings indicate the potential for using wax emulsions such as SPLAT as a slow release matrix for mosquito attractants and control agents; and that the combination could synergize the control of Cx. quinquefasciatus.
- Published
- 2016