1. Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut
- Author
-
Ooi, Cher-Pheng, Haines, Lee R., Southern, Daniel M., Lehane, Michael J., and Acosta-Serrano, Alvaro
- Subjects
Expressed Sequence Tags ,lcsh:Arctic medicine. Tropical medicine ,Tsetse Flies ,lcsh:RC955-962 ,lcsh:Public aspects of medicine ,Trypanosoma brucei brucei ,Biology and Life Sciences ,lcsh:RA1-1270 ,Host-Parasite Interactions ,Gastrointestinal Tract ,Gene Expression Regulation ,Gene Knockdown Techniques ,parasitic diseases ,Animals ,Insect Proteins ,Parasitology ,RNA, Messenger ,Molecular Biology ,Phylogeny ,Serpins ,Research Article ,Gene Library ,RNA, Double-Stranded - Abstract
The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission., Author Summary Blood feeding arthropods are exploited by blood borne parasites as vectors of transmission. Trypanosoma brucei, a salivarian trypanosome species, must survive, migrate and differentiate in the tsetse until they become mature, mammalian-infective forms within the fly salivary glands. This constitutes a significant challenge to trypanosomes as the major parasite form colonising the tsetse midgut is sensitive to lysis by blood complement, which is introduced into the tsetse gut whenever the fly feeds. In this study, we show that T. brucei may avoid being eliminated by bloodmeal complement by benefitting from a complement-inhibiting enzyme secreted by the fly itself. We showed that this serine protease inhibitor (serpin) enzyme, Serpin10, can inactivate triggers of the complement cascade, protect tsetse-infective trypanosomes from complement lysis, and is important for trypanosome establishment in the tsetse midgut. Taken together, we propose that GmmSRPN10 may be part of a repertoire of complement-inhibiting proteins secreted by tsetse that are utilized by T. brucei to evade complement lysis in the tsetse midgut.
- Published
- 2015