1. Power management and control of hybrid renewable energy systems with integrated diesel generators for remote areas.
- Author
-
Ahmed Adam, Ahmed Hamed, Chen, Jiawei, Kamel, Salah, Safaraliev, Murodbek, and Matrenin, Pavel
- Subjects
- *
CLEAN energy , *MAXIMUM power point trackers , *RENEWABLE energy sources , *HYBRID systems , *GREENHOUSE gases - Abstract
Hydrogen has become an essential element in the pursuit of sustainable and clean energy solutions. Especially with the fast-paced advancement in demand, supply, and policy environment, its impact on hybrid renewable energy (HRE) management is becoming increasingly relevant. Efficient energy consumption, cost reduction, and enhanced user comfort are now critical factors in energy optimization. The production of green hydrogen, which is generated through water electrolysis using renewable energy sources (RES), has shown great potential as a sustainable energy solution. It offers several advantages, such as zero greenhouse gas emissions, high energy density, and versatile applications. This paper presents a detailed study on the power management and control of a hybrid renewable system (HRES) equipped with a diesel generator (DG) as a backup power source. The main objectives of the hybrid system are to satisfy the load power demand, ensure the most efficient use of the HRES, and keep the battery bank charged to prevent blackouts and extend the battery's life. To guarantee the system's reliability, the DG should be sized to meet the peak load demand when the RES generates less electricity than the load demand. This study explores the feasibility of modified versions of the load following and cycle charging control strategies to overcome the limitations of managing generation and storage systems' operations in different operating modes and to enhance the performance of an HRES with a DG that supplies electricity to a small and remote location. The proposed method not only maximizes the use of RES production but also enables multi-energy source management under different power generation and load demand scenarios. The study's outcomes demonstrate the feasibility of this proposed power dispatch strategy in a remote location environment. The paper includes a detailed discussion of overall control, mathematical models, energy storage in the battery model, and energy dispatching based on load following. To design and simulate the hybrid model system, MATLAB-SIMULINK is used, and the results are analyzed to identify the appropriate operation requirements, component selection, and energy management of the hybrid renewable energy system. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF