1. Registration of visible and near infrared unmanned aerialvehicle images based on Fourier-Mellin transform
- Author
-
Sylvain Labbé, Gilles Rabatel, Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
AGRICULTURE ,Computer science ,NDVI ,near infrared ,0211 other engineering and technologies ,Image registration ,TRAITEMENT D'IMAGE ,02 engineering and technology ,Normalized Difference Vegetation Index ,Image (mathematics) ,REMOTE SENSING ,Set (abstract data type) ,Distortion ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,IMAGE ANALYSIS ,TELEDETECTION ,DRONE ,Aerial image ,021101 geological & geomatics engineering ,Remote sensing ,Pixel ,business.industry ,Near-infrared spectroscopy ,15. Life on land ,PROCHE INFRAROUGE ,homographic transformation ,[SDE]Environmental Sciences ,020201 artificial intelligence & image processing ,multimodal image registration ,Artificial intelligence ,General Agricultural and Biological Sciences ,business ,Fourier-Mellin transform - Abstract
International audience; The combination of aerial images acquired in the visible and near infrared spectral ranges is particularly relevant for agricultural and environmental survey. In unmanned aerial vehicle (UAV) imagery, such a combination can be achieved using a set of several embedded cameras mounted close to each other, followed by an image registration step. However, due to the different nature of source images, usualregistration techniques based on feature point matching are limited when dealing with blended vegetation and bare soil patterns. Here, another approach is proposed based on i mage spatial frequency analysis. This approach, which relies on the Fourier-Mellin transform, has been adapted to homographic registration and distortion issues. It has been successfully tested on various aerial image sets, and has proved to be particularly robust and accurate, providing a registration error below 0.3 pixels in most cases.
- Published
- 2016