1. CURI-YOLOv7: A Lightweight YOLOv7tiny Target Detector for Citrus Trees from UAV Remote Sensing Imagery Based on Embedded Device
- Author
-
Yali Zhang, Xipeng Fang, Jun Guo, Linlin Wang, Haoxin Tian, Kangting Yan, and Yubin Lan
- Subjects
citrus trees ,remote sensing ,YOLOv7 ,lightweight ,target detector ,Science - Abstract
Data processing of low-altitude remote sensing visible images from UAVs is one of the hot research topics in precision agriculture aviation. In order to solve the problems of large model size with slow detection speed that lead to the inability to process images in real time, this paper proposes a lightweight target detector CURI-YOLOv7 based on YOLOv7tiny which is suitable for individual citrus tree detection from UAV remote sensing imagery. This paper augmented the dataset with morphological changes and Mosica with Mixup. A backbone based on depthwise separable convolution and the MobileOne-block module was designed to replace the backbone of YOLOv7tiny. SPPF (spatial pyramid pooling fast) was used to replace the original spatial pyramid pooling structure. Additionally, we redesigned the neck by adding GSConv and depth-separable convolution and deleted its input layer from the backbone with a size of (80, 80) and its output layer from the head with a size of (80, 80). A new ELAN structure was designed, and the redundant convolutional layers were deleted. The experimental results show that the GFLOPs = 1.976, the parameters = 1.018 M, the weights = 3.98 MB, and the mAP = 90.34% for CURI-YOLOv7 in the UAV remote sensing imagery of the citrus trees dataset. The detection speed of a single image is 128.83 on computer and 27.01 on embedded devices. Therefore, the CURI-YOLOv7 model can basically achieve the function of individual tree detection in UAV remote sensing imagery on embedded devices. This forms a foundation for the subsequent UAV real-time identification of the citrus tree with its geographic coordinates positioning, which is conducive to the study of precise agricultural management of citrus orchards.
- Published
- 2023
- Full Text
- View/download PDF