1. Acute upregulation of interleukin-1 receptor by ligand.
- Author
-
Grenfell SJ, Smithers N, and Solari R
- Subjects
- Animals, Receptors, Interleukin-1, Tumor Cells, Cultured, Up-Regulation drug effects, Endocytosis drug effects, Interleukin-1 pharmacology, Receptors, Immunologic drug effects
- Abstract
In this study we have investigated the effect that interleukin 1 (IL-1) has on cell surface IL-1 receptor expression in the murine thymoma cell line, EL4 6.1. These cells express IL-1 receptors with both high affinity (Kd = 65 pM, 986 receptors/cell) and low affinity (Kd = 14.5 nM, 10,417 receptors/cell). The high- and low-affinity receptors are indistinguishable by crosslinking studies performed at both high and low ligand concentrations. However, the two affinity states could be functionally distinguished on the basis of their internalization of ligand. Receptor-mediated endocytosis was dependent upon the concentration of ligand bound to the cells. In the presence of low IL-1 concentrations receptor-mediated endocytosis was slow, whereas at high IL-1 concentrations, endocytosis was more rapid. Furthermore, receptor-mediated endocytosis of IL-1 did not result in downregulation of surface IL-1 receptors. Indeed, both kinetic and equilibrium binding studies revealed that pre-incubation of cells with IL-1 alpha resulted in an acute upregulation of 125IL-1 alpha binding to high affinity surface receptors in a time and energy dependent manner. Examination of the association kinetics suggested that increased binding was not attributable to positive co-operativity of the high affinity IL-1 receptor, but was due to increasing IL-1 receptor number. This observation was confirmed by equilibrium binding studies. Moreover, receptor numbers were not enhanced by de novo synthesis, nor release of receptors from an intracellular pool. The observed increases in surface ligand binding were most probably due to conversion of the surface pool of low affinity receptors into high affinity receptors.
- Published
- 1992
- Full Text
- View/download PDF