1. Semi-automated reproducible target transfer for cardiac radioablation - A multi-center cross-validation study within the RAVENTA trial.
- Author
-
Hohmann S, Xie J, Eckl M, Grehn M, Karfoul N, Janorschke C, Merten R, Rudic B, Buergy D, Lyan E, Krug D, Mehrhof F, Boldt LH, Corradini S, Fanslau H, Kaestner L, Zaman A, Giordano FA, Duncker D, Dunst J, Tilz RR, Schweikard A, Blanck O, and Boda-Heggemann J
- Subjects
- Humans, Tachycardia, Ventricular radiotherapy, Tachycardia, Ventricular diagnostic imaging, Software, Tomography, X-Ray Computed, Imaging, Three-Dimensional, Male, Female, Reproducibility of Results, Radiotherapy Planning, Computer-Assisted methods, Radiosurgery methods
- Abstract
Background: Stereotactic arrhythmia radioablation (STAR) is a therapeutic option for ventricular tachycardia (VT) where catheter-based ablation is not feasible or has previously failed. Target definition and its transfer from electro-anatomic maps (EAM) to radiotherapy treatment planning systems (TPS) is challenging and operator-dependent. Software solutions have been developed to register EAM with cardiac CT and semi-automatically transfer 2D target surface data into 3D CT volume coordinates. Results of a cross-validation study of two conceptually different software solutions using data from the RAVENTA trial (NCT03867747) are reported., Methods: Clinical Target Volumes (CTVs) were created from target regions delineated on EAM using two conceptually different approaches by separate investigators on data of 10 patients, blinded to each other's results. Targets were transferred using 3D-3D registration and 2D-3D registration, respectively. The resulting CTVs were compared in a core-lab using two complementary analysis software packages for structure similarity and geometric characteristics., Results: Volumes and surface areas of the CTVs created by both methods were comparable: 14.88 ± 11.72 ml versus 15.15 ± 11.35 ml and 44.29 ± 33.63 cm
2 versus 46.43 ± 35.13 cm2 . The Dice-coefficient was 0.84 ± 0.04; median surface-distance and Hausdorff-distance were 0.53 ± 0.37 mm and 6.91 ± 2.26 mm, respectively. The 3D-center-of-mass difference was 3.62 ± 0.99 mm. Geometrical volume similarity was 0.94 ± 0.05 %., Conclusion: The STAR targets transferred from EAM to TPS using both software solutions resulted in nearly identical 3D structures. Both solutions can be used for QA (quality assurance) and EAM-to-TPS transfer of STAR-targets. Semi-automated methods could potentially help to avoid mistargeting in STAR and offer standardized workflows for methodically harmonized treatments., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF