6 results on '"Nénon, Quentin"'
Search Results
2. On the Formation of Trapped Electron Radiation Belts at Ganymede.
- Author
-
Liuzzo, Lucas, Nénon, Quentin, Poppe, Andrew R., Stahl, Aaron, Simon, Sven, and Fatemi, Shahab
- Subjects
- *
RADIATION belts , *PARTICLE detectors , *ELECTRONS , *SOLAR system , *LUNAR orbit , *LAGRANGIAN points - Abstract
This study presents evidence of stably trapped electrons at Jupiter's moon Ganymede. We model energetic electron pitch angle distributions and compare them to observations from the Galileo Energetic Particle Detector to identify signatures of trapped particles during the G28 encounter. We trace electron trajectories to show that they enter Ganymede's mini‐magnetospheric environment, become trapped, and drift around the moon for up to 30 min, in some cases stably orbiting the moon multiple times. Conservation of the first adiabatic invariant partially contributes to energy changes throughout the electrons' orbits, with additional acceleration driven by local electric fields, before they return to Jupiter's magnetosphere or impact the surface. These trapped particles manifest as an electron population with an enhanced flux compared to elsewhere within the mini‐magnetosphere that are detectable by future spacecraft. Plain Language Summary: The magnetized planets of the solar system are known to possess a population of high‐energy, orbiting electrons that are sustained for extended timescales. By comparison, Ganymede, the only moon in the solar system confirmed to have its own permanent magnetic field, should also retain a similar population of trapped particles. Observations from the Galileo mission hint at the existence of electrons that may be locally trapped at the moon, but information regarding their origin and the mechanism behind trapping these electrons is unknown. Furthermore, there are no constraints on the processes that help sustain such a trapped population, and the timescales over which they are maintained at Ganymede remain unknown. In this study, we provide evidence that trapped electrons exist at Ganymede, identify the mechanisms driving their dynamics, and answer open questions about the moon's local energetic particle environment. Key Points: We compare Galileo G28 energetic electron data with test particle tracing to identify a population of trapped electrons at GanymedeWe achieve a robust match between the energetic electron pitch angle distributions from our model compared to those observed by GalileoElectrons follow stable orbits that can encircle the moon multiple times before being lost to the surface or to Jupiter's magnetosphere [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Relativistic particle measurement in jupiter's magnetosphere with Pix.PAN.
- Author
-
Hulsman, Johannes, Wu, Xin, Azzarello, Philipp, Bergmann, Benedikt, Campbell, Michael, Clark, George, Cadoux, Franck, Ilzawa, Tomoya, Kollmann, Peter, Llopart, Xavi, Nénon, Quentin, Paniccia, Mercedes, Roussos, Elias, Smolyanskiy, Petr, Sukhonos, Daniil, and Thonet, Pierre Alexandre
- Subjects
COSMIC rays ,GALACTIC cosmic rays ,SOLAR energetic particles ,PARTICLE acceleration ,RADIATION belts ,MAGNETOSPHERE ,RELATIVISTIC particles - Abstract
Pix.PAN is a compact cylindrical magnetic spectrometer, intended to provide excellent high energy particle measurements under high rate and hostile operating conditions in space. Its principal design is composed of two Halbach-array magnetic sectors and six Timepix4-based tracking layers; the latest hybrid silicon pixel detector readout ASIC designed. Due to Pix.PAN's compact and relatively simple design, it has the potential to be used for space missions exploring with measurements of unprecedented precision, high energy particles in radiation belts and the heliophere (solar energetic particles, anomalous and galactic cosmic rays). In this white paper, we discuss the design and expected performance of Pix.PAN for COMPASS (Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks), a mission concept submitted to NASA's Call "B.16 Heliophysics Mission Concept Studies (HMCS)" in 2021 that targets the extreme high energy particle environment of Jupiter's inner radiation belts. We also discuss PixPAN's operational conditions and interface requirements. The conceptual design shows that is possible to achieve an energy resolution of<12% for electrons in the range of 10 MeV-1 GeV and<35% for protons between ∼ 200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44 MHz cm 2 which is below the design limit of 360 MHz cm 2 of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Study and modelisation of the Jupiter's radiation belts
- Author
-
Nénon, Quentin, ONERA / DPHY, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Doctorat de l'Université de Toulouse délivré par l'Institut Supérieur de l'Aéronautique et de l'Espace (ISAE), Angélica SICARD, and André, Cécile
- Subjects
JUPITER ,IN SITU MEASUREMENTS ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,MAGNETOSPHERE ,SYNCHROTRON RADIATION ,ONDES ÉLECTROMAGNÉTIQUES ,CEINTURES DE RADIATION ,ELECTROMAGNETIC WAVES ,[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,RADIATION BELTS ,MESURES IN-SITU ,[PHYS.PHYS.PHYS-SPACE-PH] Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] ,[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] - Abstract
The radiation belts of the giant planet Jupiter are populated by very energetic electrons, protons and heavy ions. On one hand, these charged particles represent a major threat to exploration missions. On the other hand, understanding the radiation belt particles origin and distributionis a fundamental question of the broad Space Physics research domain. The physical model Salammbô of ONERA addresses the two previous challenges. It has been developed during two successive previous PhD thesis that ended in 2004 [Santos-Costa, 2001; Sicard, 2004]. Previous work has enabled to predict and study the electrons inward of Europa’s orbit (9 Rj) and the protons inward of the volcanic moon Io (6 Rj). Since 2004, the Galileo mission that was in orbit around Jupiter until 2003 has provided many inputs regarding the Jovian radiation belts and the environment that shape them. This PhD thesis revisits the electron model and expands the proton’s one up to Europa’s orbit. Our modeling effort shows that, in particular, electromagnetic waves propagating between the orbits of the moons Io and Europa create strong particle losses within the radiation belts, as the charged particles are precipitated in the Jovian atmosphere. In addition, our models are better suited than what has been proposed by previous work to predict the harsh radiative environment near Jupiter., Les ceintures de radiations de la planète géante Jupiter sont constituées d’électrons, de protons et d’ions lourds de très haute énergie. Ces particules chargées représentent un risque majeur pour les satellites artificiels cherchant à explorer Jupiter. Dans le même temps, comprendrel’origine et la répartition de ces particules est une problématique fondamentale du domaine de la Physique de l’Espace. Le modèle physique Salammbô de l’ONERA répond aux deux enjeux précédents. Il a été développé pour le cas de la planète géante au cours de deux thèses successives qui se sont terminées en 2004 [Santos-Costa, 2001 ; Sicard, 2004]. Les travaux précédents ont permis de mettre en place un modèle d’électrons qui s’étend de l’atmosphère de Jupiter jusqu’à l’orbite d’Europe (9 Rj) et un modèle de protons jusqu’à l’orbite de la lune volcanique Io (6 Rj ). Depuis cette date, la mission américaine Galileo, qui fut en orbite autour de Jupiter jusqu’en 2003, a livré de nombreuses informations sur les ceintures de radiations et sur l’environnement qui influence celles-ci. Cette thèse revisite le modèle d’électrons et étend le modèle de protons jusqu’à l’orbite d’Europe. Cela permet, en particulier, de montrer que les ondes électromagnétiques se propageant entre les orbites des lunes Io et Europe induisent des pertes significatives de particules, celles-ci étant précipitées dans l’atmosphère de Jupiter. Les modèles proposés au cours de cette thèse sont également mieux à même de prédire l’environnement extrême et limitant des ceintures de radiations que les précédents travaux.
- Published
- 2018
5. Etude et modélisation des ceintures de radiation de Jupiter
- Author
-
Nénon, Quentin, ONERA / DPHY, Université de Toulouse [Toulouse], PRES Université de Toulouse-ONERA, Doctorat de l'Université de Toulouse délivré par l'Institut Supérieur de l'Aéronautique et de l'Espace (ISAE), and Angélica SICARD
- Subjects
JUPITER ,IN SITU MEASUREMENTS ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,MAGNETOSPHERE ,SYNCHROTRON RADIATION ,ONDES ÉLECTROMAGNÉTIQUES ,CEINTURES DE RADIATION ,ELECTROMAGNETIC WAVES ,RADIATION BELTS ,MESURES IN-SITU ,[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] - Abstract
The radiation belts of the giant planet Jupiter are populated by very energetic electrons, protons and heavy ions. On one hand, these charged particles represent a major threat to exploration missions. On the other hand, understanding the radiation belt particles origin and distributionis a fundamental question of the broad Space Physics research domain. The physical model Salammbô of ONERA addresses the two previous challenges. It has been developed during two successive previous PhD thesis that ended in 2004 [Santos-Costa, 2001; Sicard, 2004]. Previous work has enabled to predict and study the electrons inward of Europa’s orbit (9 Rj) and the protons inward of the volcanic moon Io (6 Rj). Since 2004, the Galileo mission that was in orbit around Jupiter until 2003 has provided many inputs regarding the Jovian radiation belts and the environment that shape them. This PhD thesis revisits the electron model and expands the proton’s one up to Europa’s orbit. Our modeling effort shows that, in particular, electromagnetic waves propagating between the orbits of the moons Io and Europa create strong particle losses within the radiation belts, as the charged particles are precipitated in the Jovian atmosphere. In addition, our models are better suited than what has been proposed by previous work to predict the harsh radiative environment near Jupiter.; Les ceintures de radiations de la planète géante Jupiter sont constituées d’électrons, de protons et d’ions lourds de très haute énergie. Ces particules chargées représentent un risque majeur pour les satellites artificiels cherchant à explorer Jupiter. Dans le même temps, comprendrel’origine et la répartition de ces particules est une problématique fondamentale du domaine de la Physique de l’Espace. Le modèle physique Salammbô de l’ONERA répond aux deux enjeux précédents. Il a été développé pour le cas de la planète géante au cours de deux thèses successives qui se sont terminées en 2004 [Santos-Costa, 2001 ; Sicard, 2004]. Les travaux précédents ont permis de mettre en place un modèle d’électrons qui s’étend de l’atmosphère de Jupiter jusqu’à l’orbite d’Europe (9 Rj) et un modèle de protons jusqu’à l’orbite de la lune volcanique Io (6 Rj ). Depuis cette date, la mission américaine Galileo, qui fut en orbite autour de Jupiter jusqu’en 2003, a livré de nombreuses informations sur les ceintures de radiations et sur l’environnement qui influence celles-ci. Cette thèse revisite le modèle d’électrons et étend le modèle de protons jusqu’à l’orbite d’Europe. Cela permet, en particulier, de montrer que les ondes électromagnétiques se propageant entre les orbites des lunes Io et Europe induisent des pertes significatives de particules, celles-ci étant précipitées dans l’atmosphère de Jupiter. Les modèles proposés au cours de cette thèse sont également mieux à même de prédire l’environnement extrême et limitant des ceintures de radiations que les précédents travaux.
- Published
- 2018
6. Measuring the Earth's Synchrotron Emission From Radiation Belts With a Lunar Near Side Radio Array.
- Author
-
Hegedus, Alexander, Nénon, Quentin, Brunet, Antoine, Kasper, Justin, Sicard, Angélica, Cecconi, Baptiste, MacDowall, Robert, and Baker, Daniel
- Subjects
SYNCHROTRON radiation ,RADIATION belts ,KINETIC energy ,MAGNETIC fields - Abstract
The high kinetic energy electrons that populate the Earth's radiation belts emit synchrotron emissions because of their interaction with the planetary magnetic field. A lunar near side array would be uniquely positioned to image this emission and provide a near real time measure of how the Earth's radiation belts are responding to the current solar input. The Salammbô code is a physical model of the dynamics of the three-dimensional phase-space electron densities in the radiation belts, allowing the prediction of 1-keV to 100-MeV electron distributions trapped in the belts. This information is put into a synchrotron emission simulator that provides the brightness distribution of the emission up to 1 MHz from a given observation point. Using Digital Elevation Models from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data, we select a set of locations near the Lunar sub-Earth point with minimum elevation variation over various-sized patches where we simulate radio receivers to create a synthetic aperture. We consider all realistic noise sources in the low-frequency regime. We then use a custom Common Astronomy Software Applications code to image and process the data from our defined array, using SPICE to align the lunar coordinates with the Earth. We find that for a moderate lunar surface electron density of 250/cm3, the radiation belts may be detected every 12-24 hr with a 16,384-element array over a 100-km-diameter circle. Changing electron density can make measurements 10 times faster at lunar night and 10 times slower at lunar noon. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.