1. Flat-plane based double-counting free and parameter free many-body DFT+U
- Author
-
Burgess, Andrew C. and O'Regan, David D.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,Physics - Computational Physics ,Quantum Physics - Abstract
Burgess et al. have recently introduced the BLOR corrective exchange-correlation functional that is, by construction, the unique simplified rotationally-invariant DFT+U functional that enforces the flat-plane condition separately on each effective orbital of a localized subspace. Detached from the Hubbard model, functionals of this type are both double-counting correction free and, when optimized in situ using appropriate error quantifiers, effectively parameter free. In this work, the extension of the BLOR functional to address many-body errors (mBLOR) is derived. The mBLOR functional is built to enforce the flat-plane condition on the entire subspace, rather than on each orbital individually. In this way inter-orbital errors are corrected on the same footing as the single-particle ones. Focusing on exact test cases with strong inter-orbital interactions, the BLOR and mBLOR functionals were benchmarked against contemporary DFT+U functionals using the total energy extensivity condition on stretched homo-nuclear p-block dimers that represent various self-interaction and static-correlation error regimes. The BLOR functional outperformed all other DFT+$U$ functionals tested, which often act to increase total-energy errors, yet it still yielded large errors in some systems. mBLOR instead yielded low energy errors across all four strongly-correlated dimers, while being constructed using only semi-local approximation ingredients. As mBLOR would not otherwise introduce a band-gap correction in the manner that is a desirable feature of DFT+U, we developed a cost-free technique to reintroduce it automatically by moving the functional's unusual explicit derivative discontinuity into the potential. With this in place, mBLOR is the only known DFT$+U$ functional that opens the bandgap of stretched neutral homo-nuclear dimers without the aid of unphysical spin-symmetry breaking., Comment: 21 pages, 9 figures, and 4 tables
- Published
- 2024