9 results on '"Doaa Bahaa Eldin Darwish"'
Search Results
2. Ameliorating arsenic and PVC microplastic stress in barley (Hordeum vulgare L.) using copper oxide nanoparticles: an environmental bioremediation approach
- Author
-
Haifa Abdulaziz Sakit Alhaithloul, Suliman Mohammed Suliman Alghanem, Ibtisam Mohammed Alsudays, Zahid Khorshid Abbas, Siham M. AL-Balawi, Baber Ali, Tabarak Malik, Sadia Javed, Shafaqat Ali, Sezai Ercisli, and Doaa Bahaa Eldin Darwish
- Subjects
Cellular component ,Gene expression ,Heavy metal toxicity ,Microplastic ,Nanotechnology ,Proline metabolism ,Botany ,QK1-989 - Abstract
Abstract The present study investigates the impact of varying concentrations of PVC microplastics (PVC–MPs) – specifically 0 (no PVC–MPs), 2, and 4 mg L− 1 –alongside different arsenic (As) levels of 0 (no As), 150, and 300 mg kg− 1 in the soil, with the concurrent application of copper oxide–nanoparticles (CuO–NPs) at 0 (no CuO –NPs), 25 and 50 µg mL− 1 to barley (Hordeum vulgare L.) plants. This research primarily aims to assess plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, as well as the response of various antioxidants (both enzymatic and non-enzymatic) and their relevant genes expression, proline metabolism, the AsA–GSH cycle, and cellular fractionation within the plants. The findings showed that increased levels of PVC–MPs and As stress in the soil significantly reduced plant growth and biomass, photosynthetic pigments, and gas exchange characteristics. Additionally, PVC–MPs and As stress increased oxidative stress in the roots and shoots, as evidenced by elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL), which in turn stimulated the production of various enzymatic and non-enzymatic antioxidants, gene expression, and sugar content. Furthermore, a notable increase in proline metabolism, the AsA–GSH cycle, and cellular pigmentation was observed. Conversely, the application of CuO–NPs resulted in a substantial improvement in plant growth and biomass, gas exchange characteristics, and the activity of enzymatic and non-enzymatic antioxidants, along with a reduction in oxidative stress. Additionally, CuO–NPs enhanced cellular fractionation while decreasing proline metabolism and the AsA-GSH cycle in H. vulgare plants. These outcomes provide new insights into sustainable agricultural practices and offer significant potential in addressing the critical challenges of heavy metal contamination in agricultural soils.
- Published
- 2024
- Full Text
- View/download PDF
3. Induced genetic diversity through mutagenesis in wheat gene pool and significant use of SCoT markers to underpin key agronomic traits
- Author
-
Ahmed Ali Abdelhameed, Mohammed Ali, Doaa Bahaa Eldin Darwish, Manal Abdullah AlShaqhaa, Dalia Abdel-Fattah H. Selim, Aziza Nagah, and Muhammad Zayed
- Subjects
Wheat (Triticum aestivum L.) ,Chemical mutagenesis ,Genetic diversity ,Gene pool ,Sodium azide ,Hydrazine hydrate ,Botany ,QK1-989 - Abstract
Abstract Background This research explores the efficacy of mutagenesis, specifically using sodium azide (SA) and hydrazine hydrate (HZ) treatments, to introduce genetic diversity and enhance traits in three wheat (Triticum aestivum L.) genotypes. The experiment entails subjecting the seeds to different doses of SA and HZ and cultivating them in the field for two consecutive generations: M1 (first generation) and M2 (second generation). We then employed selective breeding techniques with Start Codon Targeted (SCoT) markers to select traits within the wheat gene pool. Also, the correlation between SCoT markers and specific agronomic traits provides insights into the genetic mechanisms underlying mutagenesis-induced changes in wheat. Results In the study, eleven genotypes were derived from parent varieties Sids1, Sids12, and Giza 168, and eight mutant genotypes were selected from the M1 generation and further cultivated to establish the M2 generation. The results revealed that various morphological and agronomical characteristics, such as plant height, spikes per plant, spike length, spikelet per spike, grains per spikelet, and 100-grain weight, showed increases in different genotypes from M1 to M2. SCoT markers were employed to assess genetic diversity among the eleven genotypes. The bioinformatics analysis identified a correlation between SCoT markers and the transcription factors ABSCISIC ACID INSENSITIVE3 (ABI3) and VIVIPAROUS1 (VP1), crucial for plant development, growth, and stress adaptation. A comprehensive examination of genetic distance and the function identification of gene-associated SCoT markers may provide valuable insights into the mechanisms by which SA and HZ act as mutagens, enhancing wheat agronomic qualities. Conclusions This study demonstrates the effective use of SA and HZ treatments to induce gene diversity through mutagenesis in the wheat gene pool, resulting in the enhancement of agronomic traits, as revealed by SCoT markers. The significant improvements in morphological and agronomical characteristics highlight the potential of mutagenesis techniques for crop improvement. These findings offer valuable information for breeders to develop effective breeding programs to enhance wheat quality and resilience through increased genetic diversity.
- Published
- 2024
- Full Text
- View/download PDF
4. Constitutive overexpression of GsIMaT2 gene from wild soybean enhances rhizobia interaction and increase nodulation in soybean (Glycine max)
- Author
-
Doaa Bahaa Eldin Darwish, Mohammed Ali, Aisha M. Abdelkawy, Muhammad Zayed, Marfat Alatawy, and Aziza Nagah
- Subjects
Glycine soja ,Glycine max ,Root growth and nodulation ,Isoflavone ,Strigolactone ,GsIMaT2 gene ,Botany ,QK1-989 - Abstract
Abstract Background Since the root nodules formation is regulated by specific and complex interactions of legume and rhizobial genes, there are still too many questions to be answered about the role of the genes involved in the regulation of the nodulation signaling pathway. Results The genetic and biological roles of the isoflavone-7-O-beta-glucoside 6″-O-malonyltransferase gene GsIMaT2 from wild soybean (Glycine soja) in the regulation of nodule and root growth in soybean (Glycine max) were examined in this work. The effect of overexpressing GsIMaT2 from G. soja on the soybean nodulation signaling system and strigolactone production was investigated. We discovered that the GsIMaT2 increased nodule numbers, fresh nodule weight, root weight, and root length by boosting strigolactone formation. Furthermore, we examined the isoflavone concentration of transgenic G. max hairy roots 10 and 20 days after rhizobial inoculation. Malonyldaidzin, malonylgenistin, daidzein, and glycitein levels were considerably higher in GsMaT2-OE hairy roots after 10- and 20-days of Bradyrhizobium japonicum infection compared to the control. These findings suggest that isoflavones and their biosynthetic genes play unique functions in the nodulation signaling system in G. max. Conclusions Finally, our results indicate the potential effects of the GsIMaT2 gene on soybean root growth and nodulation. This study provides novel insights for understanding the epistatic relationship between isoflavones, root development, and nodulation in soybean. Highlights * Cloning and Characterization of 7-O-beta-glucoside 6″-O-malonyltransferase (GsIMaT2) gene from wild soybean (G. soja). * The role of GsIMaT2 gene in the regulation of root nodule development. *Overexpression of GsMaT2 gene increases the accumulation of isoflavonoid in transgenic soybean hairy roots. * This gene could be used for metabolic engineering of useful isoflavonoid production.
- Published
- 2022
- Full Text
- View/download PDF
5. Correction: Helal et al. Improving Yield Components and Desirable Eating Quality of Two Wheat Genotypes Using Si and NanoSi Particles under Heat Stress. Plants 2022, 11, 1819
- Author
-
Nesma M. Helal, Hemmat I. Khattab, Manal M. Emam, Gniewko Niedbała, Tomasz Wojciechowski, Inès Hammami, Nadiyah M. Alabdallah, Doaa Bahaa Eldin Darwish, Mohamed M. El-Mogy, and Heba M. Hassan
- Subjects
n/a ,Botany ,QK1-989 - Abstract
In the original publication [...]
- Published
- 2023
- Full Text
- View/download PDF
6. Molecular Identification of Zantedeschia Culture with Determination of Its Morphometric and Metabolic Activities for Mediterranean Acclimatization
- Author
-
Eman Tawfik, Mohamed Fathy Ahmed, Doha A. Albalawi, Bandar S. Aljuaid, Doaa Bahaa Eldin Darwish, Samy F. Mahmoud, Karim M. Hassan, Mohamed F. M. Ibrahim, and Ashraf Bakry Abdel Razik
- Subjects
Zantedeschia albomaculata ,in vitro culture ,pigmentation ,morphological description ,anatomy ,phenolics ,Botany ,QK1-989 - Abstract
Calla lily (Zantedeschia albomaculata (Hook.) Baill.) is an herbaceous or semi-evergreen perennial grown from rhizomes. It is commonly named “Spotted Arum”. Ribosomal RNAs (rRNAs) are found in all known organisms and are known for being functionally equivalent in all of them. A completely new in vitro culture protocol was applied to Z. albomaculata with two hormones, 6-Benzylaminopurine (BAP) and kinetin, to obtain full growth and multiplication. Due to their highly conserved sequences, the analysis of small-subunit rRNAs (16S–18S rRNAs) can provide precise statistical evaluation of a wide variety of phylogenetic connections. As a result, the plant’s 18S rRNA gene allowed for identification and partial sequencing. Also, the traditional floral method and the novel application technique for identification were applied to Z. albomaculata. In this paper we systemically describe the structural strategies of the plant’s adaptation to the surroundings at the morphological, physiological, and anatomical scale. Most the essential oils and fatty acids found in Z. albomaculata are omega fatty acids, octadecenoic acid, linoleic acid, and palmitic acid. All these fatty acids have industrial, medicinal, and pharmaceutical applications. The significant findings are the spadix sheathing leaves, and the precipitation of raphides calcium oxalate. The mitotic index showing the division activity was recorded, and it was 17.4%. The antimicrobial activity of Z. albomaculata ethanol extract was performed via the well diffusion method. This extract has shown high activity against Escherichia coli and Pseudomonas aeruginosa, compared to its lower activity against Bacillus cereus. By defining these characteristics and in vitro culture conditions, we will be able to acclimatize the plant in greenhouses, and then transfer it to the open field. The findings of this work identified the general characteristics of Zantedeschia albomaculata as an ornamental and medicinal plant in order to acclimatize this plant for cultivation in the Mediterranean climate.
- Published
- 2022
- Full Text
- View/download PDF
7. Improving Yield Components and Desirable Eating Quality of Two Wheat Genotypes Using Si and NanoSi Particles under Heat Stress
- Author
-
Nesma M. Helal, Hemmat I. Khattab, Manal M. Emam, Gniewko Niedbała, Tomasz Wojciechowski, Inès Hammami, Nadiyah M. Alabdallah, Doaa Bahaa Eldin Darwish, Mohamed M. El-Mogy, and Heba M. Hassan
- Subjects
wheat ,silicon ,silicon nanoparticles ,heat stress ,late sowing ,yield components ,Botany ,QK1-989 - Abstract
Global climate change is a significant challenge that will significantly lower crop yield and staple grain quality. The present investigation was conducted to assess the effects of the foliar application of either Si (1.5 mM) or Si nanoparticles (1.66 mM) on the yield and grain quality attributes of two wheat genotypes (Triticum aestivum L.), cv. Shandweel 1 and cv. Gemmeiza 9, planted at normal sowing date and late sowing date (heat stress). Si and Si nanoparticles markedly mitigated the observed decline in yield and reduced the heat stress intensity index value at late sowing dates, and improved yield quality via the decreased level of protein, particularly glutenin, as well as the lowered activity of α-amylase in wheat grains, which is considered a step in improving grain quality. Moreover, Si and nanoSi significantly increased the oil absorption capacity (OAC) of the flour of stressed wheat grains. In addition, both silicon and nanosilicon provoked an increase in cellulose, pectin, total phenols, flavonoid, oxalic acid, total antioxidant power, starch and soluble protein contents, as well as Ca and K levels, in heat-stressed wheat straw, concomitant with a decrease in lignin and phytic acid contents. In conclusion, the pronounced positive effects associated with improving yield quantity and quality were observed in stressed Si-treated wheat compared with Si nanoparticle-treated ones, particularly in cv. Gemmeiza 9.
- Published
- 2022
- Full Text
- View/download PDF
8. Exogenous Paclobutrazol Reinforces the Antioxidant and Antimicrobial Properties of Lavender (Lavandula officinalis L.) Oil through Modulating Its Composition of Oxygenated Terpenes
- Author
-
Salwa M. El-Sayed, Karim. M. Hassan, Ahmed. N. Abdelhamid, Eman E. Yousef, Yasmin M. R. Abdellatif, Samah H. Abu-Hussien, Mohamed A. Nasser, Walaa. A. Elshalakany, Doaa Bahaa Eldin Darwish, Awatif M. Abdulmajeed, Nadiyah M. Alabdallah, Salem Mesfir Al-Qahtani, Nadi Awad Al-Harbi, Eldessoky S. Dessoky, Hatem Ashour, and Mohamed F. M. Ibrahim
- Subjects
Lavandula officinalis L. ,Gas chromatography-mass spectrometry (GC-MS) ,chemical composition ,monoterpene and sesquiterpene ,Botany ,QK1-989 - Abstract
Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content, and both antioxidant and antimicrobial properties of lavender oil were investigated. The results indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth parameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ significantly enhanced the chlorophyll content and displayed a marked change in the composition of the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol, γ–terpinene, α-pinocarvone, caryophyllene, β-vetivenene, β-santalol, ledol, geranyl isovalerate, farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by 13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A. niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated that all examined species were more sensitive to the oil that was extracted from lavender plants, treated with 400 ppm PBZ, compared to the other concentrations.
- Published
- 2022
- Full Text
- View/download PDF
9. Alpha Lipoic Acid as a Protective Mediator for Regulating the Defensive Responses of Wheat Plants against Sodic Alkaline Stress: Physiological, Biochemical and Molecular Aspects
- Author
-
Khaled M. A. Ramadan, Maha Mohammed Alharbi, Asma Massad Alenzi, Hossam S. El-Beltagi, Doaa Bahaa Eldin Darwish, Mohammed I. Aldaej, Tarek A. Shalaby, Abdallah Tageldein Mansour, Yasser Abd El-Gawad El-Gabry, and Mohamed F. M. Ibrahim
- Subjects
Triticum aestivum L. ,high-pH ,oxidative damages ,ionic homeostasis ,osmolytes and qRT-PCR ,Botany ,QK1-989 - Abstract
Recently, exogenous α-Lipoic acid (ALA) has been suggested to improve the tolerance of plants to a wide array of abiotic stresses. However, there is currently no definitive data on the role of ALA in wheat plants exposed to sodic alkaline stress. Therefore, this study was designed to evaluate the effects of foliar application by ALA at 0 (distilled water as control) and 20 µM on wheat seedlings grown under sodic alkaline stress (50 mM 1:1 NaHCO3 & Na2CO3; pH 9.7. Under sodic alkaline stress, exogenous ALA significantly (p ≤ 0.05) improved growth (shoot fresh and dry weight), chlorophyll (Chl) a, b and Chl a + b, while Chl a/b ratio was not affected. Moreover, leaf relative water content (RWC), total soluble sugars, carotenoids, total soluble phenols, ascorbic acid, K and Ca were significantly increased in the ALA-treated plants compared to the ALA-untreated plants. This improvement was concomitant with reducing the rate of lipid peroxidation (malondialdehyde, MDA) and H2O2. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) demonstrated greater activity in the ALA-treated plants compared to the non-treated ones. Conversely, proline, catalase (CAT), guaiacol peroxidase (G-POX), Na and Na/K ratio were significantly decreased in the ALA-treated plants. Under sodic alkaline stress, the relative expression of photosystem II (D2 protein; PsbD) was significantly up-regulated in the ALA treatment (67% increase over the ALA-untreated plants); while Δ pyrroline-5-carboxylate synthase (P5CS), plasma membrane Na+/H+ antiporter protein of salt overly sensitive gene (SOS1) and tonoplast-localized Na+/H+ antiporter protein (NHX1) were down-regulated by 21, 37 and 53%, respectively, lower than the ALA-untreated plants. These results reveal that ALA may be involved in several possible mechanisms of alkalinity tolerance in wheat plants.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.