16 results on '"D. Molinari"'
Search Results
2. The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0
- Author
-
M. Di Bacco, D. Molinari, and A. R. Scorzini
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
Accurate flood damage modelling is essential to estimate the potential impact of floods and to develop effective mitigation strategies. However, flood damage models rely on diverse sources of hazard, exposure and vulnerability data, which are often incomplete, inconsistent or totally missing. These issues with data quality or availability introduce uncertainties into the modelling process and affect the final risk estimations. In this study, we present INSYDE 2.0, a flood damage modelling tool that integrates detailed survey and desk-based data for enhanced reliability and informativeness of flood damage predictions, including an explicit representation of the effect of uncertainties arising from incomplete knowledge of the variables characterising the system under investigation.
- Published
- 2024
- Full Text
- View/download PDF
3. Qualitative flood risk assessment for road and railway infrastructures: the experience of the MOVIDA project
- Author
-
N. Petruccelli, L. Mantecchini, A. Gallazzi, D. Molinari, M. Hammouti, M. Zazzeri, S. Sterlacchini, F. Ballio, A. Brath, and A. Domeneghetti
- Subjects
Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
The Po River District Authority promoted the MOVIDA project with the aim to define appropriate methodologies for flood risk assessment and being compliant with the European Floods Directive (Directive 2007/60/EC). A dedicated Open Source Geographic Information System (i.e. QGIS geoprocessing modules) has been developed for mapping the expected damages in all areas at significant risk in the Po District (Northern Italy), considering five categories of exposed elements (population, infrastructures, economic activities, environmental and cultural heritage, and na-tech sites). Focusing on road and railway infrastructures, the methodology proposed within the project adopts information coming from different data sources (Regional Geoportals, Open Street Map, etc.) and allows to qualitatively estimate the potential risk associated with a flood event. Different risk classes (High, Medium, Low and Null) are assigned in relation to roads category (i.e., Highways, Main, Secondary, Service, Other) or railways type (High-Speed train or not), thus considering both the relevance of the infrastructure itself (as well as its topographical characteristics: e.g. tunnel, bridge, etc.) and the magnitude of the expected event (i.e., hazard). The definition of the risk matrix led to the estimation of the lengths of the sections exposed to different risk levels, which is useful to support the definition of potential mitigation measures and support the competent bodies in the organization of the rescue.
- Published
- 2024
- Full Text
- View/download PDF
4. A conceptual model for the estimation of flood damage to power grids
- Author
-
P. Asaridis and D. Molinari
- Subjects
Science ,Geology ,QE1-996.5 ,Dynamic and structural geology ,QE500-639.5 - Abstract
Flood damage assessment is a critical aspect in any decision-making process on flood risk management. For this reason, reliable tools for flood damage estimation are required for all the categories of exposed elements. Despite infrastructures can suffer high economic losses in case of flood, compared to other exposed sectors, their flood damage modelling is still a challenging task. This is due, on the one hand, to the structural and dynamic complexity of infrastructure networks, and, on the other hand, to the lack of knowledge and data to investigate damage mechanisms and to calibrate and validate damage models. Grounding on the investigation of the state-of-the-art, this paper presents a conceptualization of flood damage to power grids and reviews the methodologies in the field for an in-depth understanding of the existing modelling approaches, challenges, and limitations. The conceptual model highlights: (i) the different kinds of damage (i.e., direct, indirect, and systemic) the network can suffer, (ii) the hazard, exposure, and vulnerability parameters on which they depend, (iii) the spatial and temporal scales required for their assessment, (iv) the interconnections among power grids and economic activities, and (v) the different recipients of economic losses. The development of the model stresses the importance of dividing the damage assessment into two steps: the estimation of damage in physical units and the consequent economic losses in monetary terms. The variety of damage mechanisms and cascading effects shaping the final damage figure arises, asking for an interdisciplinary and multi-scale evaluation approach. The ultimate objective of the conceptual model is to be an operative tool in support of more comprehensive and reliable flood damage assessments to power grids.
- Published
- 2023
- Full Text
- View/download PDF
5. Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin
- Author
-
T. Simonelli, L. Zoppi, D. Molinari, and F. Ballio
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Published
- 2022
- Full Text
- View/download PDF
6. INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
- Author
-
A. R. Scorzini, B. Dewals, D. Rodriguez Castro, P. Archambeau, and D. Molinari
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
The spatial transfer of flood damage models among regions and countries is a challenging but unavoidable approach for performing flood risk assessments in data- and model-scarce regions. In these cases, similarities and differences between the contexts of application should be considered to obtain reliable damage estimations, and, in some cases, the adaptation of the original model to the new conditions is required. This study exemplifies a replicable procedure for the adaptation to the Belgian context of a multi-variable, synthetic flood damage model for the residential sector originally developed for Italy (INSYDE). The study illustrates necessary amendments in model assumptions, especially regarding default input values for the hazard and building parameters and damage functions describing the modeled damage mechanisms.
- Published
- 2022
- Full Text
- View/download PDF
7. Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
- Author
-
A. K. Gain, Y. Bühler, P. Haegeli, D. Molinari, M. Parise, D. J. Peres, J. G. Pinto, K. Schröter, R. M. Trigo, M. C. Llasat, and H. Kreibich
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years. The papers cover all the topics contemplated in the European Geosciences Union (EGU) Division on Natural Hazards including dissemination, education, outreach and teaching. The selected articles thus represent excellent scientific contributions in the major areas of natural hazards and risks and helped NHESS to become an exceptionally strong journal representing interdisciplinary areas of natural hazards and risks. At its 20th anniversary, we are proud that NHESS is not only used by scientists to disseminate research results and novel ideas but also by practitioners and decision-makers to present effective solutions and strategies for sustainable disaster risk reduction.
- Published
- 2022
- Full Text
- View/download PDF
8. Brief Communication: Simple-INSYDE, development of a new tool for flood damage evaluation from an existing synthetic model
- Author
-
M. Galliani, D. Molinari, and F. Ballio
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
INSYDE is a multivariable, synthetic model for flood damage assessment to dwellings. The analysis and use of this model highlighted some weaknesses, linked to its complexity, that can undermine its usability and correct implementation. This study proposes a simplified version of INSYDE which maintains its multivariable and synthetic nature but has simpler mathematical formulations permitting easier use and a direct analysis of the relation between damage and its explanatory variables.
- Published
- 2020
- Full Text
- View/download PDF
9. Are flood damage models converging to 'reality'? Lessons learnt from a blind test
- Author
-
D. Molinari, A. R. Scorzini, C. Arrighi, F. Carisi, F. Castelli, A. Domeneghetti, A. Gallazzi, M. Galliani, F. Grelot, P. Kellermann, H. Kreibich, G. S. Mohor, M. Mosimann, S. Natho, C. Richert, K. Schroeter, A. H. Thieken, A. P. Zischg, and F. Ballio
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
Effective flood risk management requires a realistic estimation of flood losses. However, available flood damage estimates are still characterized by significant levels of uncertainty, questioning the capacity of flood damage models to depict real damages. With a joint effort of eight international research groups, the objective of this study was to compare, in a blind-validation test, the performances of different models for the assessment of the direct flood damage to the residential sector at the building level (i.e. microscale). The test consisted of a common flood case study characterized by high availability of hazard and building data but with undisclosed information on observed losses in the implementation stage of the models. The nine selected models were chosen in order to guarantee a good mastery of the models by the research teams, variety of the modelling approaches, and heterogeneity of the original calibration context in relation to both hazard and vulnerability features. By avoiding possible biases in model implementation, this blind comparison provided more objective insights on the transferability of the models and on the reliability of their estimations, especially regarding the potentials of local and multivariable models. From another perspective, the exercise allowed us to increase awareness of strengths and limits of flood damage modelling, which are summarized in the paper in the form of take-home messages from a modeller's perspective.
- Published
- 2020
- Full Text
- View/download PDF
10. AGRIDE-c, a conceptual model for the estimation of flood damage to crops: development and implementation
- Author
-
D. Molinari, A. R. Scorzini, A. Gallazzi, and F. Ballio
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
This paper presents AGRIDE-c, a conceptual model for the assessment of flood damage to crops, in favour of more comprehensive flood damage assessments. Available knowledge on damage mechanisms triggered by inundation phenomena is systematised in a usable and consistent tool, with the main strength represented by the integration of physical damage assessment into the evaluation of its economic consequences on the income of the farmers. This allows AGRIDE-c to be used to guide the flood damage assessment process in different geographical and economic contexts, as demonstrated by the example provided in this study for the Po Plain (north of Italy). The development and implementation of the model highlighted that a thorough understanding and modelling of mechanisms causing damage to crops is a powerful tool to support more effective damage mitigation strategies, both at public and at private (i.e. farmers) levels.
- Published
- 2019
- Full Text
- View/download PDF
11. Preface: Damage of natural hazards: assessment and mitigation
- Author
-
H. Kreibich, T. Thaler, T. Glade, and D. Molinari
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Published
- 2019
- Full Text
- View/download PDF
12. Preface: Natural hazard event analysis for risk reduction and adaptation
- Author
-
K. Schröter, D. Molinari, M. Kunz, and H. Kreibich
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Published
- 2018
- Full Text
- View/download PDF
13. Flood damage: a model for consistent, complete and multipurpose scenarios
- Author
-
S. Menoni, D. Molinari, F. Ballio, G. Minucci, O. Mejri, F. Atun, N. Berni, and C. Pandolfo
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.
- Published
- 2016
- Full Text
- View/download PDF
14. INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis
- Author
-
F. Dottori, R. Figueiredo, M. L. V. Martina, D. Molinari, and A. R. Scorzini
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
Methodologies to estimate economic flood damages are increasingly important for flood risk assessment and management. In this work, we present a new synthetic flood damage model based on a component-by-component analysis of physical damage to buildings. The damage functions are designed using an expert-based approach with the support of existing scientific and technical literature, loss adjustment studies, and damage surveys carried out for past flood events in Italy. The model structure is designed to be transparent and flexible, and therefore it can be applied in different geographical contexts and adapted to the actual knowledge of hazard and vulnerability variables. The model has been tested in a recent flood event in northern Italy. Validation results provided good estimates of post-event damages, with similar or superior performances when compared with other damage models available in the literature. In addition, a local sensitivity analysis was performed in order to identify the hazard variables that have more influence on damage assessment results.
- Published
- 2016
- Full Text
- View/download PDF
15. Ex post damage assessment: an Italian experience
- Author
-
D. Molinari, S. Menoni, G. T. Aronica, F. Ballio, N. Berni, C. Pandolfo, M. Stelluti, and G. Minucci
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
In recent years, awareness of a need for more effective disaster data collection, storage, and sharing of analyses has developed in many parts of the world. In line with this advance, Italian local authorities have expressed the need for enhanced methods and procedures for post-event damage assessment in order to obtain data that can serve numerous purposes: to create a reliable and consistent database on the basis of which damage models can be defined or validated; and to supply a comprehensive scenario of flooding impacts according to which priorities can be identified during the emergency and recovery phase, and the compensation due to citizens from insurers or local authorities can be established. This paper studies this context, and describes ongoing activities in the Umbria and Sicily regions of Italy intended to identifying new tools and procedures for flood damage data surveys and storage in the aftermath of floods. In the first part of the paper, the current procedures for data gathering in Italy are analysed. The analysis shows that the available knowledge does not enable the definition or validation of damage curves, as information is poor, fragmented, and inconsistent. A new procedure for data collection and storage is therefore proposed. The entire analysis was carried out at a local level for the residential and commercial sectors only. The objective of the next steps for the research in the short term will be (i) to extend the procedure to other types of damage, and (ii) to make the procedure operational with the Italian Civil Protection system. The long-term aim is to develop specific depth–damage curves for Italian contexts.
- Published
- 2014
- Full Text
- View/download PDF
16. Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy
- Author
-
D. Molinari, F. Ballio, and S. Menoni
- Subjects
Environmental technology. Sanitary engineering ,TD1-1066 ,Geography. Anthropology. Recreation ,Environmental sciences ,GE1-350 ,Geology ,QE1-996.5 - Abstract
The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost–benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.