1. Curcumin nicotinate suppresses abdominal aortic aneurysm pyroptosis via lncRNA PVT1/miR-26a/KLF4 axis through regulating the PI3K/AKT signaling pathway
- Author
-
Hui Liu, Guo-Shan Bi, Yang-Yi-Jing Wang, Jie Chen, Jian-Ming Xiong, and Qing-Qing Zou
- Subjects
Paper ,0303 health sciences ,Vascular smooth muscle ,Akt/PKB signaling pathway ,Health, Toxicology and Mutagenesis ,medicine.medical_treatment ,Pyroptosis ,Cell migration ,Inflammation ,030204 cardiovascular system & hematology ,Toxicology ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Cytokine ,chemistry ,medicine ,Curcumin ,Cancer research ,cardiovascular system ,medicine.symptom ,PI3K/AKT/mTOR pathway ,030304 developmental biology - Abstract
Abdominal aortic aneurysm (AAA) is a chronic dilated disease of the aorta that is characterized by chronic inflammation. Curcumin (Cur) is previously showed to attenuate AAA by inhibiting inflammatory response in ApoE −/− mice. Since Cur has the limitations of aqueous solubility and instability. Here, we focus on the role of curcumin nicotinate (CurTn), a Cur derivative is derived from Cur and nicotinate. An in vitro model of AAA was established by treating vascular smooth muscle cells (VSMCs) with II (Ang-II). Gene and protein expressions were examined by quantitative real-time PCR (qPCR) or western blotting. Cell migration and pyroptosis were determined by transwell assay and flow cytometry. The interaction between plasmacytoma variant translocation 1 (PVT1), miR-26a and krüppel-like factor 4 (KLF4) was predicted by online prediction tool and confirmed by luciferase reporter assay. CurTn reduced Ang-II-induced AAA-associated proteins, inflammatory cytokine expressions, and attenuated pyroptosis in VSMCs. PVT1 overexpression suppressed the inhibitory effect of CurTn on AngII-induced pyroptosis and inflammatory in VSMCs by sponging miR-26a. miR-26a directly targeted KLF4 and suppressed its expression, which eventually led to the deactivation of the PI3K/AKT signaling pathway. Besides, the regulatory effect of CurTn on pyroptosis of VSMCs induced by Ang-II was reversed through the PVT1/miR-26a/KLF4 pathway. In short, CurTn suppressed VSMCs pyroptosis and inflammation though mediation PVT1/miR-26a/KLF4 axis by regulating the PI3K/AKT signaling pathway, CurTn might consider as a potential therapeutic target in the treatment of AAA.
- Published
- 2020