1. The cohomology of the Steenrod algebra and the mod $p$ Lannes-Zarati homomorphism
- Author
-
Phan Hoàng Chơn and Phạm Bích Như
- Subjects
Pure mathematics ,primary, 55P47, 55Q45 ,Lannes-Zarati homomorphism ,01 natural sciences ,Prime (order theory) ,Article ,Primary 55P47, 55Q45, Secondary 55S10, 55T15 ,Mod ,0103 physical sciences ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Mathematics - Algebraic Topology ,0101 mathematics ,Representation Theory (math.RT) ,Mathematics ,Algebra and Number Theory ,Steenrod algebra ,010102 general mathematics ,spherical classes ,Term (logic) ,Cohomology ,Adams spectral sequence ,Homomorphism ,010307 mathematical physics ,Hurewicz map ,Pointed space ,cohomology of the Steenrod algebra ,Mathematics - Representation Theory ,secondary, 55S10, 55T15 - Abstract
In this paper, we compute ${\rm Ext}_{A}^{s}(\widetilde{H}^*(B\mathbb{Z}/p),\mathbb{F}_p)$ for $s\leq 1$. Using this result, we investigate the behavior of $\varphi_3^{\mathbb{F}_p}$ and $\varphi_s^{\widetilde{H}^*(B\mathbb{Z}/p)}\ (s\leq1)$ for an odd prime $p$., Comment: 36 pages
- Published
- 2019