1. Integrating microdosimetric in vitro RBE models for particle therapy into TOPAS MC using the MicrOdosimetry-based modeliNg for RBE ASsessment (MONAS) tool.
- Author
-
Cartechini G, Missiaggia M, Scifoni E, La Tessa C, and Cordoni FG
- Subjects
- Humans, Relative Biological Effectiveness, Monte Carlo Method, Cell Survival radiation effects, Protons, Proton Therapy
- Abstract
Objective. In this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines simulations of microdosimetric distributions with radiobiological microdosimetry-based models for predicting cell survival curves and dose-dependent RBE. Approach. MONAS expands TOPAS microdosimetric extension, by including novel specific energy scorers to calculate the single- and multi-event specific energy microdosimetric distributions at different micrometer scales. These spectra are used as physical input to three different formulations of the microdosimetric kinetic m odel , and to the generalized stochastic microdosimetric model (GSM
2 ), to predict dose-dependent cell survival fraction and RBE. MONAS predictions are then validated against experimental microdosimetric spectra and in vitro survival fraction data. To show the MONAS features, we present two different applications of the code: (i) the depth-RBE curve calculation from a passively scattered proton SOBP and monoenergetic12 C-ion beam by using experimentally validated spectra as physical input, and (ii) the calculation of the 3D RBE distribution on a real head and neck patient geometry treated with protons. Main results. MONAS can estimate dose-dependent RBE and cell survival curves from experimentally validated microdosimetric spectra with four clinically relevant radiobiological models. From the radiobiological characterization of a proton SOBP and12 MONAS extension offers a comprehensive microdosimetry-based framework for assessing the biological effects of particle radiation in both research and clinical environments, pushing closer the experimental physics-based description to the biological damage assessment, contributing to bridging the gap between a microdosimetric description of the radiation field and its application in proton therapy treatment with variable RBE.Significance. MONAS extension offers a comprehensive microdosimetry-based framework for assessing the biological effects of particle radiation in both research and clinical environments, pushing closer the experimental physics-based description to the biological damage assessment, contributing to bridging the gap between a microdosimetric description of the radiation field and its application in proton therapy treatment with variable RBE., (Creative Commons Attribution license.)- Published
- 2024
- Full Text
- View/download PDF