1. Going deep into schizophrenia with artificial intelligence.
- Author
-
Cortes-Briones, Jose A., Tapia-Rivas, Nicolas I., D'Souza, Deepak Cyril, and Estevez, Pablo A.
- Subjects
- *
ARTIFICIAL intelligence , *MACHINE learning , *NONLINEAR systems , *DEEP learning , *CAUSAL models , *SCHIZOPHRENIA treatment , *PROBABILITY theory , *ALGORITHMS - Abstract
Despite years of research, the mechanisms governing the onset, relapse, symptomatology, and treatment of schizophrenia (SZ) remain elusive. The lack of appropriate analytic tools to deal with the heterogeneity and complexity of SZ may be one of the reasons behind this situation. Deep learning, a subfield of artificial intelligence (AI) inspired by the nervous system, has recently provided an accessible way of modeling and analyzing complex, high-dimensional, nonlinear systems. The unprecedented accuracy of deep learning algorithms in classification and prediction tasks has revolutionized a wide range of scientific fields and is rapidly permeating SZ research. Deep learning has the potential of becoming a valuable aid for clinicians in the prediction, diagnosis, and treatment of SZ, especially in combination with principles from Bayesian statistics. Furthermore, deep learning could become a powerful tool for uncovering the mechanisms underlying SZ thanks to a growing number of techniques designed for improving model interpretability and causal reasoning. The purpose of this article is to introduce SZ researchers to the field of deep learning and review its latest applications in SZ research. In general, existing studies have yielded impressive results in classification and outcome prediction tasks. However, methodological concerns related to the assessment of model performance in several studies, the widespread use of small training datasets, and the little clinical value of some models suggest that some of these results should be taken with caution. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF