1. Large-scale identification and visualization of human liver N-glycome enriched from LO2 cells.
- Author
-
Xiao, Kaijie, Han, Yuyin, and Tian, Zhixin
- Subjects
- *
GLYCOMICS , *LIVER cancer , *GLYCOSYLATION , *GLYCOPROTEINS , *GLYCANS - Abstract
Aberrant glycosylation has been commonly observed in various physiological and pathological disorders (including cancers), and quite a few glycoproteins have been approved by the US Food and Drug Administration (FDA) as markers for early diagnosis. Each glycoprotein may have multiple glycoforms, and cancer-related ones can be only some specific glycoforms which have much higher sensitivity and specificity; for example, AFP glycoform AFP-L3 with N-glycan of 01Y(61F)41Y41M(31M41Y41L41S61M41Y41L41S is of bigger diagnostic value for hepatocellular carcinoma than total AFP (i.e., combination of all glycoforms). Mass spectrometry-based glycomics is currently the state-of-the-art instrumental analytical pipeline for high-throughput characterization of various glycoforms, where not only monosaccharide composition but also comprehensive structural information (sequence and linkage) of N-glycans are now reported thanks to our recently developed N-glycan database search engine GlySeeker. With this new capability, here, we report our large-scale characterization of human liver N-glycome with primary structures; 214 unique N-glycans with unique primary structures were identified and visualized with spectrum-level false discovery rate ≤ 1% and number of best hits of 1. The LO2 N-glycans reported here serve as a basic reference for future liver N-glycome study, and further quantitative analysis will enable characterization of differentially expressed N-glycans and discovery of more effective markers for liver and other diseases. Data are available via ProteomeXchange with identifier PXD008158. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF