8 results on '"Delrieu Guy"'
Search Results
2. Identification of Vertical Profiles of Reflectivity for Correction of Volumetric Radar Data Using Rainfall Classification
- Author
-
Kirstetter, Pierre-Emmanuel, Andrieu, Hervé, Delrieu, Guy, and Boudevillain, Brice
- Published
- 2010
3. Bollène-2002 Experiment : Radar Quantitative Precipitation Estimation in the Cévennes–Vivarais Region, France
- Author
-
Delrieu, Guy, Boudevillain, Brice, Nicol, John, Chapon, Benoît, Kirstetter, Pierre-Emmanuel, Andrieu, Hervé, and Faure, D.
- Published
- 2009
4. The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France : A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory
- Author
-
Delrieu, Guy, Ducrocq, Véronique, Gaume, Eric, Nicol, John, Payrastre, Olivier, Yates, Eddy, Kirstetter, Pierre-Emmanuel, Andrieu, Hervé, Ayral, Pierre-Alain, Bouvier, Christophe, Creutin, Jean-Dominique, Livet, Marc, Anquetin, Sandrine, Lang, Michel, Neppel, Luc, Obled, Charles, Parent-du-Châtelet, Jacques, Saulnier, Georges-Marie, Walpersdorf, Andrea, and Wobrock, Wolfram
- Published
- 2005
5. Drop Size Distribution Climatology in Cévennes-Vivarais Region, France
- Author
-
Hachani, Sahar, Boudevillain, Brice, Delrieu, Guy, Bargaoui, Zoubeida, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Modélisation en Hydraulique et Environnement, Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM)-Université de Tunis El Manar (UTM), ANR-11-BS56-0027,FLOODSCALE,Observation et modélisation multi-échelles pour la compréhension et la simulation des crues éclair(2011), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
lcsh:Meteorology. Climatology ,lcsh:QC851-999 ,drop size distribution ,precipitation ,Mediterranean climate ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Z-R relationship ,ComputingMilieux_MISCELLANEOUS ,orography ,rain microphysics - Abstract
International audience; Mediterranean regions are prone to heavy rainfall, flash floods, and erosion issues. Drop size distribution (DSD) is a key element for studying these phenomena through the hydrological variables which can be derived from it (rainfall rates and totals, kinetic energy fluxes). This paper proposes a five-year (2012-2016) DSD climatology, summarized by scaling parameters for concentration, size, and shape. The DSD network is composed of two longitudinal transects of three OTT Parsivel optical disdrometers each, across the Mediterranean Cevennes-Vivarais region. The influence of several factors are analysed: location (distance from the sea, orographic environment), season, daily synoptic weather situation (derived from geopotential heights, at 700 and 1000 hPa), rainfall type (analysed from 5 min radar data), as well as some combinations of these factors. It was found and/or confirmed that the orographic environment, season, weather patterns associated with the exposure to low level atmospheric flows, and rainfall types influenced the microphysical processes, leading to rainfall, measured at the ground. Consequently, the DSD characteristics, as well as the relationships between the rainfall rate and reflectivity factor, are influenced by these factors.
- Published
- 2017
- Full Text
- View/download PDF
6. Estimation of rain kinetic energy from radar reflectivity and/or rain rate based on a scaling formulation of the raindrop size distribution
- Author
-
Yu, Nan, Boudevillain, Brice, Delrieu, Guy, Uijlenhoet, Remko, Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Chair of Hydrology and Quantitative Water Management, Wageningen University and Research [Wageningen] (WUR), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and Wageningen University and Research Centre [Wageningen] (WUR)
- Subjects
WIMEK ,model ,spectra ,cloud ,precipitation ,Hydrology and Quantitative Water Management ,intensity ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,france ,soil-erosion ,ComputingMilieux_MISCELLANEOUS ,Hydrologie en Kwantitatief Waterbeheer - Abstract
This study offers an approach to estimate the rainfall kinetic energy (KE) by rain intensity (R) and radar reflectivity factor (Z) separately or jointly on the basis of a one- or two-moment scaled raindrop size distribution (DSD) formulation, which contains (1) R and/or Z observations and (2) the dimensionless probability density function (pdf) of a scaled raindrop diameter. The key point is to explain all variability of the DSD by the evolution of the explaining moments (R and Z); hence the pdf is considered as constant. A robust method is proposed to estimate the climatological values of the parameters with a 28 month DSD data set collected in the Cévennes-Vivarais region of France. Three relationships (KE-R, KE-Z, and KE-RZ), which link the observations (R and/or Z) to rainfall kinetic energy (KE), are established. As expected, the assessment using the disdrometer data indicates that (1) because of the proximity of the moment orders, the KE-Z relationship exhibits less variability than the KE-R relationship and (2) the combination of R and Z yields a significant improvement of the estimation of KE compared to the single-moment formulations. Subsequently, a first attempt to spatialize the kinetic energy using radar and rain gauge measurements is presented for a convective event, showing a promising potential for erosion process studies. Different from the application with the disdrometer data, the performance of the KE-Z relationship degrades compared to the KE-R relationship as a result of a bias and/or the sampling characteristics of the radar data
- Published
- 2012
- Full Text
- View/download PDF
7. Unified Formulation of Single- and Multimoment Normalizations of the Raindrop Size Distribution Based on the Gamma Probability Density Function.
- Author
-
Yu, Nan, Delrieu, Guy, Boudevillain, Brice, Hazenberg, Pieter, and Uijlenhoet, Remko
- Subjects
- *
METEOROLOGY , *CLIMATOLOGY , *RAINDROP size , *PROBABILITY density function , *POWER law (Mathematics) - Abstract
This study offers a unified formulation of single- and multimoment normalizations of the raindrop size distribution (DSD), which have been proposed in the framework of scaling analyses in the literature. The key point is to consider a well-defined 'general distribution' g( x) as the probability density function (pdf) of the raindrop diameter scaled by a characteristic diameter D c. The two-parameter gamma pdf is used to model the g( x) function. This theory is illustrated with a 3-yr DSD time series collected in the Cévennes region, France. It is shown that three DSD moments ( M2, M3, and M4) make it possible to satisfactorily model the DSDs, both for individual spectra and for time series of spectra. The formulation is then extended to the one- and two-moment normalization by introducing single and dual power-law models. As compared with previous scaling formulations, this approach explicitly accounts for the prefactors of the power-law models to yield a unique and dimensionless g( x), whatever the scaling moment(s) considered. A parameter estimation procedure, based on the analysis of power-law regressions and the self-consistency relationships, is proposed for those normalizations. The implementation of this method with different scaling DSD moments (rain rate and/or radar reflectivity) yields g( x) functions similar to the one obtained with the three-moment normalization. For a particular rain event, highly consistent g( x) functions can be obtained during homogeneous rain phases, whatever the scaling moments used. However, the g( x) functions may present contrasting shapes from one phase to another. This supports the idea that the g( x) function is process dependent and not 'unique' as hypothesized in the scaling theory. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
8. Impact of the Altitudinal Gradients of Precipitation on the Radar QPE Bias in the French Alps.
- Author
-
Faure, Dominique, Delrieu, Guy, and Gaussiat, Nicolas
- Subjects
- *
PRECIPITATION variability , *RADAR , *METEOROLOGICAL precipitation , *RAIN gauges , *RAINFALL , *DISCRIMINATION (Sociology) - Abstract
In the French Alps the quality of the radar Quantitative Precipitation Estimation (QPE) is limited by the topography and the vertical structure of precipitation. A previous study realized in all the French Alps, has shown a general bias between values of the national radar QPE composite and the rain gauge measurements: a radar QPE over-estimation at low altitude (+20% at 200 m a.s.l.), and an increasing underestimation at high altitudes (until −40% at 2100 m a.s.l.). This trend has been linked to altitudinal gradients of precipitation observed at ground level. This paper analyzes relative altitudinal gradients of precipitation estimated with rain gauges measurements in 2016 for three massifs around Grenoble, and for different temporal accumulations (yearly, seasonal, monthly, daily). Comparisons of radar and rain gauge accumulations confirm the bias previously observed. The parts of the current radar data processing affecting the bias value are pointed out. The analysis shows a coherency between the relative gradient values estimated at the different temporal accumulations. Vertical profiles of precipitation detected by a research radar installed at the bottom of the valley also show how the wide horizontal variability of precipitation inside the valley can affect the gradient estimation. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.