1. Styrene alters potassium endolymphatic concentration in a model of cultured utricle explants.
- Author
-
Tallandier V, Merlen L, Boucard S, Thomas A, Venet T, Chalansonnet M, Gauchard G, Campo P, and Pouyatos B
- Subjects
- Animals, Animals, Newborn, Endolymph metabolism, Female, Rats, Long-Evans, Saccule and Utricle metabolism, Saccule and Utricle pathology, Endolymph drug effects, Potassium metabolism, Saccule and Utricle drug effects, Styrene toxicity
- Abstract
Despite well-documented neurotoxic and ototoxic properties, styrene remains commonly used in industry. Its effects on the cochlea have been extensively studied in animals, and epidemiological and animal evidence indicates an impact on balance. However, its influence on the peripheral vestibular receptor has yet to be investigated. Here, we assessed the vestibulotoxicity of styrene using an in vitro model, consisting of three-dimensional cultured newborn rat utricles filled with a high‑potassium (K
+ ) endolymph-like fluid, called "cysts". K+ entry in the cyst ("influx") and its exit ("efflux") are controlled by secretory cells and hair cells, respectively. The vestibular epithelium's functionality is thus linked to K+ concentration, measured using a microelectrode. Known inhibitors of K+ efflux and influx validated the model. Cysts were subsequently exposed to styrene (0.25; 0.5; 0.75 and 1 mM) for 2 h or 72 h. The decrease in K+ concentration measured after both exposure durations was dose-dependent, and significant from 0.75 mM styrene. Vacuoles were visible in the cytoplasm of epithelial cells from 0.5 mM after 2 h and from 0.25 mM after 72 h. The results presented here are the first evidence that styrene may deregulate K+ homeostasis in the endolymphatic space, thereby altering the functionality of the vestibular receptor., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Ltd. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF