Moreno-Marcos, Pedro M., Muñoz-Merino, Pedro J., Maldonado-Mahauad, Jorge, Pérez-Sanagustin, Mar, Alario-Hoyos, Carlos, DELGADO KLOOS, Carlos, Ruipérez-Valiente, José, Staubitz, Thomas, Jenner, Matt, Halawa, Sherif, Zhang, Jiayin, Despujol, Ignacio, Montoro, German, Peffer, Melanie, Rohloff, Tobias, Lane, Jenny, Turro, Carlos, Li, Xitong, Reich, Justin, Universidad Carlos III de Madrid [Madrid] (UC3M), Pontificia Universidad Católica de Chile (UC), Universidad de Cuenca (UCUENCA), Teaching And Learning Enhanced by Technologies (IRIT-TALENT), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III - Paul Sabatier (UT3), Universidad Autonoma de Madrid (UAM), Ecole des Hautes Etudes Commerciales (HEC Paris), FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/project Smartlet (TIN2017-85179-C3-1-R), Madrid Regional Government, through the project e-Madrid-CM (S2018/TCS-4307), Ministerio de Ciencia, Innovación y Universidades, under an FPU fellowship (FPU016/00526), CONICYT/DOCTORADO NACIONAL 2016 (grant No. 21160081), Dirección de Investigación de la Universidad de Cuenca (DIUC), Cuenca-Ecuador, under Analítica del aprendizaje para el estudio de estrategias de aprendizaje autorregulado en un contexto de aprendizaje híbrido (DIUC_XVIII_2019_54), Ministerio de Ciencia, Innovación y Universidades (España), and Comunidad de Madrid
MOOCs (Massive Open Online Courses) have usually high dropout rates. Many articles have proposed predictive models in order to early detect learners at risk to alleviate this issue. Nevertheless, existing models do not consider complex high-level variables, such as self-regulated learning (SRL) strategies, which can have an important effect on learners' success. In addition, predictions are often carried out in instructor-paced MOOCs, where contents are released gradually, but not in self-paced MOOCs, where all materials are available from the beginning and users can enroll at any time. For self-paced MOOCs, existing predictive models are limited in the way they deal with the flexibility offered by the course start date, which is learner dependent. Therefore, they need to be adapted so as to predict with little information short after each learner starts engaging with the MOOC. To solve these issues, this paper contributes with the study of how SRL strategies could be included in predictive models for self-paced MOOCs. Particularly, self-reported and event-based SRL strategies are evaluated and compared to measure their effect for dropout prediction. Also, the paper contributes with a new methodology to analyze self-paced MOOCs when carrying out a temporal analysis to discover how early prediction models can serve to detect learners at risk. Results of this article show that event-based SRL strategies show a very high predictive power, although variables related to learners' interactions with exercises are still the best predictors. That is, event-based SRL strategies can be useful to predict if e.g., variables related to learners' interactions with exercises are not available (...) This work has been co-funded by the Erasmus+ Programme of the European Union, through the project LALA (586120-EPP-1-2017-1-ES-EPPKA2-CBHE-JP), by FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/project Smartlet (TIN2017-85179-C3-1-R), and by the Madrid Regional Government, through the project e-Madrid-CM (S2018/TCS-4307). The latter is also co-financed by the European Structural Funds (FSE and FEDER). It has also been supported by Ministerio de Ciencia, Innovación y Universidades, under an FPU fellowship (FPU016/00526), by the CONICYT/DOCTORADO NACIONAL 2016 (grant No. 21160081), and by Dirección de Investigación de la Universidad de Cuenca (DIUC), Cuenca-Ecuador, under Analítica del aprendizaje para el estudio de estrategias de aprendizaje autorregulado en un contexto de aprendizaje híbrido (DIUC_XVIII_2019_54).