1. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes.
- Author
-
van der Meer D, Rokicki J, Kaufmann T, Córdova-Palomera A, Moberget T, Alnæs D, Bettella F, Frei O, Doan NT, Sønderby IE, Smeland OB, Agartz I, Bertolino A, Bralten J, Brandt CL, Buitelaar JK, Djurovic S, van Donkelaar M, Dørum ES, Espeseth T, Faraone SV, Fernández G, Fisher SE, Franke B, Haatveit B, Hartman CA, Hoekstra PJ, Håberg AK, Jönsson EG, Kolskår KK, Le Hellard S, Lund MJ, Lundervold AJ, Lundervold A, Melle I, Monereo Sánchez J, Norbom LC, Nordvik JE, Nyberg L, Oosterlaan J, Papalino M, Papassotiropoulos A, Pergola G, de Quervain DJF, Richard G, Sanders AM, Selvaggi P, Shumskaya E, Steen VM, Tønnesen S, Ulrichsen KM, Zwiers MP, Andreassen OA, and Westlye LT
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Alzheimer Disease diagnostic imaging, Child, Child, Preschool, Female, Genome-Wide Association Study, Hippocampus diagnostic imaging, Hippocampus metabolism, Humans, Male, Middle Aged, Schizophrenia diagnostic imaging, Young Adult, Alzheimer Disease genetics, Alzheimer Disease pathology, Hippocampus anatomy & histology, Hippocampus pathology, Neuroimaging, Polymorphism, Single Nucleotide genetics, Schizophrenia genetics, Schizophrenia pathology
- Abstract
The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10
-16 ) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.- Published
- 2020
- Full Text
- View/download PDF