1. Dual deletion of guanylyl cyclase-A and p38 mitogen-activated protein kinase in podocytes with aldosterone administration causes glomerular intra-capillary thrombi.
- Author
-
Sugioka S, Yamada H, Ishii A, Kato Y, Yamada R, Mori KP, Ohno S, Handa T, Ikushima A, Ishimura T, Osaki K, Tokudome T, Matsusaka T, Nebreda AR, Yanagita M, and Yokoi H
- Subjects
- Animals, Humans, Mice, Aldosterone pharmacology, Aldosterone metabolism, Endothelial Cells metabolism, Guanylate Cyclase metabolism, Guanylate Cyclase pharmacology, Mice, Knockout, p38 Mitogen-Activated Protein Kinases metabolism, Plasminogen Activator Inhibitor 1 metabolism, Plasminogen Activator Inhibitor 1 pharmacology, Transforming Growth Factor beta1 metabolism, Mitogen-Activated Protein Kinase 14, Podocytes metabolism, Thrombosis metabolism
- Abstract
Natriuretic peptides exert not only blood-lowering but also kidney-protective effects through guanylyl cyclase-A (GC-A), a natriuretic peptide receptor. Signaling through GC-A has been shown to protect podocytes from aldosterone-induced glomerular injury, and a p38 mitogen-activated protein kinase (MAPK) inhibitor reduced glomerular injury in aldosterone-infused podocyte-specific GC-A knockout mice. To explore the role of p38 MAPK in podocytes, we constructed podocyte-specific p38 MAPK and GC-A double knockout mice (pod-double knockout mice). Unexpectedly, aldosterone-infused and high salt-fed (B-ALDO)-treated pod-double knockout mice resulted in elevated serum creatinine, massive albuminuria, macrophage infiltration, foot process effacement, nephrin and podocin reduction, and additionally, intra-capillary fibrin thrombi, indicating endothelial injury. Microarray analysis showed increased plasminogen activator inhibitor-1 (PAI-1) in glomeruli of B-ALDO-treated pod-double knockout mice. In B-ALDO-treated pod-double knockout mice, PAI-1 increased in podocytes, and treatment with PAI-1 neutralizing antibody ameliorated intra-capillary thrombus formation. In vitro, deletion of p38 MAPK by the CRISPR/Cas9 system and knockdown of GC-A in human cultured podocytes upregulated PAI-1 and transforming growth factor- β1 (TGF-β1). When p38 MAPK knockout podocytes, transfected with a small interfering RNA to suppress GC-A, were co-cultured with glomerular endothelial cells in a transwell system, the expression of TGF-β1 was increased in glomerular endothelial cells. PAI-1 inhibition ameliorated both podocyte and endothelial injury in the transwell system signifying elevated PAI-1 in podocytes is a factor disrupting normal podocyte-endothelial crosstalk. Thus, our results indicate that genetic dual deletion of p38 MAPK and GC-A in podocytes accelerates both podocyte and endothelial injuries, suggesting these two molecules play indispensable roles in podocyte function., (Copyright © 2023 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF