1. A novel noninvasive approach for evaluating work of breathing indices in a developmental rat model using respiratory inductance plethysmography.
- Author
-
Zhu Y, Aghai ZH, Betal SGN, Favara M, Fong G, Rahman T, and Shaffer TH
- Subjects
- Abdomen physiology, Animals, Child, Humans, Infant, Isoflurane administration & dosage, Lung drug effects, Lung physiology, Models, Animal, Movement drug effects, Movement physiology, Rats, Rats, Sprague-Dawley, Respiration drug effects, Respiratory Function Tests methods, Respiratory Mechanics drug effects, Respiratory Mechanics physiology, Work of Breathing drug effects, Plethysmography methods, Work of Breathing physiology
- Abstract
Pulmonary function testing (PFT) is an important component for evaluating the outcome of experimental rodent models of respiratory diseases. Respiratory inductance plethysmography (RIP) provides a noninvasive method of PFT requiring minimal cooperation. RIP measures work of breathing (WOB) indices including phase angle (Ф), percent rib cage (RC %), breaths per minute (BPM), and labored breathing index (LBI) on an iPad. The aim of this study was to evaluate the utility of a recently developed research instrument, pneuRIP, for evaluation of WOB indices in a developmental rat model. Sprague Dawley rats (2 months old) were commercially acquired and anaesthetised with isoflurane. The pneuRIP system uses two elastic bands: one band (RC) placed around the rib cage under the upper armpit and another band (AB) around the abdomen. The typical thoracoabdominal motion (TAM) plot showed the abdomen and rib cage motion in synchrony. The plots of phase angle and LBI as a function of data point number showed that values were within the range. The distribution for phase angle and LBI was within a narrow range. pneuRIP testing provided instantaneous PFT results. This study demonstrated the utility of RIP as a rapid, noninvasive approach for evaluating treatment interventions in the rodent model.
- Published
- 2020
- Full Text
- View/download PDF