1. Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load.
- Author
-
Haeberlein S, Chevalley-Maurel S, Ozir-Fazalalikhan A, Koppejan H, Winkel BMF, Ramesar J, Khan SM, Sauerwein RW, Roestenberg M, Janse CJ, Smits HH, and Franke-Fayard B
- Subjects
- Animals, CD8-Positive T-Lymphocytes immunology, CD8-Positive T-Lymphocytes metabolism, Disease Models, Animal, Humans, Immunization, Life Cycle Stages, Liver immunology, Lymphocyte Count, Mice, Parasitemia parasitology, Plasmodium falciparum immunology, Liver parasitology, Malaria immunology, Malaria parasitology, Parasite Load, Plasmodium physiology
- Abstract
In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8
+ and CD4+ effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8+ dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.- Published
- 2017
- Full Text
- View/download PDF