1. NRC Immune receptor networks show diversified hierarchical genetic architecture across plant lineages.
- Author
-
Goh FJ, Huang CY, Derevnina L, and Wu CH
- Subjects
- Evolution, Molecular, Plant Immunity genetics, Gene Expression Regulation, Plant, Gene Regulatory Networks, Phylogeny, NLR Proteins genetics, NLR Proteins metabolism, Plant Proteins genetics, Plant Proteins metabolism, Nicotiana genetics, Nicotiana metabolism
- Abstract
Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages., Competing Interests: Conflict of interest statement. The authors declare no conflict of interest., (© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF