1. New Insights for the Renewed Phytoplankton-Bacteria Coupling Concept: the Role of the Trophic Web.
- Author
-
Lozano IL, González-Olalla JM, and Medina-Sánchez JM
- Subjects
- Bacteria metabolism, Carbon metabolism, Phytoplankton metabolism, Ecosystem
- Abstract
It is widely accepted that in many aquatic ecosystems bacterioplankton is dependent on and regulated by organic carbon supplied by phytoplankton, leading to coupled algae-bacteria relationship. In this study, an in-depth analysis of this relationship has been carried out by combining two approaches: (i) a correlation analyses between heterotrophic bacterial production (BP) vs. primary production (PP) or algal excretion of organic carbon (EOC), (ii) the balance between bacterial carbon demands (BCD) and the supply of C as EOC, measured as BCD:EOC ratio. During the study period (2013-2016), the algae-bacteria relationship was constantly changing from a coupling in 2013, uncoupling in 2014 and 2015, and an incipient return to coupling (in 2016). Our results show that top-down control (bacterivory) by algal mixotrophy acts as a decoupling force since it provides a fresh C source different to algal EOC to satisfy bacterial carbon demands. Notably, a relationship between the BCD:EOC ratio and the ecosystem metabolic balance (Primary production (PP): respiration (R)) was found, suggesting that PP:R may be a good predictor of the algae-bacteria coupling. This analysis, including the comparison between basal and potential ecosystem metabolic balance, can be a tool to improve knowledge on the interaction between both biotics compartments, which the traditional analyses on coupling may not capture., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF