1. X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance
- Author
-
Adriano Losso, Maria A. Lo Gullo, Giuliana Tromba, Andrea Nardini, Giai Petit, Stefan Mayr, Patrizia Trifilò, Tadeja Savi, Sebastiano Salleo, Serena Pacilè, Nardini, Andrea, Savi, Tadeja, Losso, Adriano, Petit, Giai, Pacilè, Serena, Tromba, Giuliana, Mayr, Stefan, Trifilo', Patrizia, LO GULLO, MARIA ASSUNTA, and Salleo, Sebastiano
- Subjects
0106 biological sciences ,0301 basic medicine ,X-ray microtomography ,Physiology ,Embolism ,hydraulics ,Soil science ,Plant Science ,xylem ,Laurus ,01 natural sciences ,embolism, hydraulics, laurel (Laurus nobilis), percentage loss of conductance (PLC), synchrotron, X-ray microtomography (microCT), xylem ,embolism ,Synchrotron ,03 medical and health sciences ,Laurus nobilis ,food ,Xylem ,Laurel (Laurus nobilis) ,Botany ,synchrotron ,medicine ,Hydraulics ,Percentage loss of conductance (PLC) ,X-ray microtomography (microCT) ,Plant Stems ,percentage loss of conductance (PLC) ,fungi ,laurel (Laurus nobilis) ,Direct observation ,food and beverages ,Conductance ,Water ,X-Ray Microtomography ,Hydraulic ,medicine.disease ,Hydraulic conductance ,food.food ,030104 developmental biology ,Environmental science ,Functional status ,010606 plant biology & botany - Abstract
Summary Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging −3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.
- Published
- 2017