1. An experimental data-driven mass-spring model of flexible Calliphora wings
- Author
-
Henja Wehmann, Dmitry Kolomenskiy, Hung Truong, Thomas Engels, Kai Schneider, Fritz-Olaf Lehmann, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Universität Rostock, Tokyo Institute of Technology [Tokyo] (TITECH), and ANR-15-CE40-0019,AIFIT,Aérodynamique du vol d'insecte en écoulement turbulent(2015)
- Subjects
insect flight ,Inertial frame of reference ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Biophysics ,FOS: Physical sciences ,Kinematics ,Rotation ,Biochemistry ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Physics::Fluid Dynamics ,symbols.namesake ,FOS: Mathematics ,genetic algorithm ,Astrophysics::Solar and Stellar Astrophysics ,Mathematics - Numerical Analysis ,Physics - Biological Physics ,Engineering (miscellaneous) ,Physics ,Wing ,Deformation (mechanics) ,Fluid Dynamics (physics.flu-dyn) ,Reynolds number ,Numerical Analysis (math.NA) ,Physics - Fluid Dynamics ,Aerodynamics ,Mechanics ,mass-spring system ,wing flexibility ,Aerodynamic force ,Biological Physics (physics.bio-ph) ,symbols ,Molecular Medicine ,Biotechnology - Abstract
International audience; Insect wings can undergo significant deformation during flapping motion owing to inertial, elastic and aerodynamic forces. Changes in shape then alter aerodynamic forces, resulting in a fully coupled fluid–structure interaction (FSI) problem. Here, we present detailed three-dimensional FSI simulations of deformable blowfly (Calliphora vomitoria) wings in flapping flight. A wing model is proposed using a multi-parameter mass-spring approach, chosen for its implementation simplicity and computational efficiency. We train the model to reproduce static elasticity measurements by optimizing its parameters using a genetic algorithm with covariance matrix adaptation (CMA-ES). Wing models trained with experimental data are then coupled to a high-performance flow solver run on massively parallel supercomputers. Different features of the modeling approach and the intra-species variability of elastic properties are discussed. We found that individuals with different wing stiffness exhibit similar aerodynamic properties characterized by dimensionless forces and power at the same Reynolds number. We further study the influence of wing flexibility by comparing between the flexible wings and their rigid counterparts. Under equal prescribed kinematic conditions for rigid and flexible wings, wing flexibility improves lift-to-drag ratio as well as lift-to-power ratio and reduces peak force observed during wing rotation.
- Published
- 2021
- Full Text
- View/download PDF