49 results on '"V. A. Tsarev"'
Search Results
2. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector
- Author
-
S. Murgia, B. Speakman, D. J. Auty, A. Lebedev, D. G. Michael, M. Zois, M. Kordosky, P. S. Miyagawa, P. Stamoulis, V. K. Semenov, A. E. Kreymer, P. Vahle, C. Howcroft, G. Tzanakos, H. R. Gallagher, G. Koizumi, J. K. De Jong, P. Lucas, N. Mayer, M. Watabe, D. J. Boehnlein, J. Reichenbacher, D. A. Harris, David Petyt, Marvin L Marshak, E. A. Peterson, M. Bishai, Warner A. Miller, Ken Heller, Mcd Sanchez, T. Joffe-Minor, Ž Pavlović, T. Kafka, M. Dierckxsens, M. A. Thomson, D. Naples, A. C. Weber, P. A. Symes, Stanley G. Wojcicki, S. M. Seun, M. Dorman, Jie Liu, K. Grzelak, M. D. Messier, S. Childress, R. Piteira, S. R. Mishra, Niki Saoulidou, G. F. Pearce, V. A. Ryabov, E. Buckley-Geer, J. Boehm, J. J. Evans, D. Rahman, S. Avvakumov, G. Tinti, A. Holin, T. Bergfeld, S. M S Kasahara, A. D. Marino, R. C. Webb, J. A. Thompson, Jorge G. Morfin, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, M. Ishitsuka, Harvey B Newman, B. R. Becker, D. Bogert, D. J. Koskinen, A. Belias, Juan Pedro Ochoa-Ricoux, J. H. Cobb, T. Durkin, C. James, E. P. Hartouni, D. R. Ward, A. Mislivec, R. J. Nichol, Douglas Wright, Anatael Cabrera, I. Trostin, John Marshall, N. Grossman, T. M. Raufer, D. Bhattacharya, A. M. McGowan, S. K. Kotelnikov, K. Ruddick, E. Grashorn, H. Zheng, J. Hartnell, S. L. Mufson, R. Ospanov, T. C. Nicholls, Q. K. Wu, K. E. Arms, J. Gogos, J. Schneps, C. Rosenfeld, V. A. Tsarev, T. H. Fields, R. P. Litchfield, R. Pittam, Ruben Saakyan, Sacha E Kopp, G. M. Irwin, G. A. Giurgiu, D. Cherdack, R. Gran, G. J. Bock, H. A. Rubin, C. P. Ward, Carlos Escobar, M. V. Frohne, D. Indurthy, P. Schreiner, M. V. Diwan, A. Marchionni, C. Andreopoulos, H. J. Kang, D. E. Reyna, Andrew Blake, R. K. Plunkett, E. Falk Harris, C. D. Moore, Alec Habig, T. Osiecki, A. Sousa, Francisco Yumiceva, G. J. Feldman, W. Smart, J. Urheim, R. Armstrong, Brajesh C Choudhary, Peter D. Barnes, P. Adamson, B. C. Barish, W. P. Oliver, V. Paolone, C. R. Bower, J. L. Thron, E. Tetteh-Lartey, R. Zwaska, J. K. Nelson, R. L. Talaga, D. A. Jensen, D. E. Jaffe, A. J. Culling, E. Beall, H. Ping, D. Drakoulakos, S. Kumaratunga, B. Rebel, M. S. Kim, B. Baller, V. Smirnitsky, Philip Harris, J. A. Musser, A. De Santo, R. H. Milburn, C. White, C. W. Peck, P. J. Litchfield, P. M. Border, Karol Lang, L. Mualem, V. Verebryusov, R. A. Rameika, T. Yang, R. Hatcher, A. R. Erwin, John Derek Chapman, J. R. Meier, G. I. Merzon, N. West, D. S. Ayres, L. Jenner, William L. Barrett, P. Shanahan, B. Bock, W. A. Mann, A. Godley, P. Gouffon, R. Lee, B. Viren, R. Ford, Caleb Smith, J. M. Paley, A. A. Wehmann, N. Tagg, T. Patzak, G.D. Barr, John Miller, Juergen Thomas, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Monte Carlo method ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Neutrino detector ,MINOS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Super-Kamiokande ,Neutrino oscillation ,Lepton - Abstract
We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios is consistent with an oscillation signal. A fit to the data for the oscillation parameters excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons by charge sign in both the data and Monte Carlo events and found the ratio of the total number of negative to positive muons in both samples. The ratio of those ratios is a test of CPT conservation. The result is consistent with CPT conservation., 14 pages, 15 figures
- Published
- 2016
- Full Text
- View/download PDF
3. Simulation of an experiment on detecting ultra-high-energy particles with regard to the structure of the lunar soil surface layer
- Author
-
V. A. Ryabov, V. A. Chechin, V. A. Tsarev, N. G. Polukhina, B. N. Lomonosov, and G. A. Gusev
- Subjects
Physics ,Range (particle radiation) ,Physics and Astronomy (miscellaneous) ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Monte Carlo method ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Radiation ,Regolith ,Computational physics ,Physics::Space Physics ,Particle ,Lunar soil ,Astrophysics::Earth and Planetary Astrophysics - Abstract
The feasibility of using the lunar orbital radio detector to detect radio signals from cascades initiated by ultra-high-energy cosmic rays interacting with the lunar regolith is studied. Simulation by the Monte Carlo method demonstrates that, with the regolith thickness randomly distributed in the range 2–12 m, the detection of radio signals reflected from the lower boundary of the regolith (for particle energies W ≥ 1020 eV) increases the number of valid events severalfold. The additional contribution due to the reflected radio-frequency radiation greatly enhances the scientific potential of experiments with the lunar orbital radio detector.
- Published
- 2010
- Full Text
- View/download PDF
4. Hybrid method for detecting cascades produced by ultrahigh-energy cosmic particles using a circumlunar satellite
- Author
-
G. A. Gusev, N. G. Polukhina, I. A. Krol, V. A. Chechin, V. A. Tsarev, T. M. Roganova, V. A. Ryabov, B. N. Lomonosov, and V. I. Galkin
- Subjects
Physics ,Range (particle radiation) ,COSMIC cancer database ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Cosmic ray ,Astrophysics ,Electronic, Optical and Magnetic Materials ,Computational physics ,Cascade ,High Energy Physics::Experiment ,Neutrino ,Energy (signal processing) ,Zenith - Abstract
A hybrid method for detecting cosmic rays and neutrino cascades using the radio method and the conventional method for detecting cascade particles was proposed. Cascades produced in the lunar soil near the surface by ultrahigh-energy cosmic rays and neutrinos in the energy range of 1 GeV–100 TeV, coming from above at different angles, were calculated. The calculated energy and angular distributions were extrapolated to the energy region of 1020 eV. Using these results, the detection threshold was estimated as 1020 eV which is approximately identical to the threshold for the radio detector previously considered by the authors.
- Published
- 2009
- Full Text
- View/download PDF
5. Long-wavelength coherent radio radiation of cascades. I. Calculation within the cascade theory
- Author
-
V. A. Chechin and V. A. Tsarev
- Subjects
Physics ,Long wavelength ,Cascade ,Quantum mechanics ,Monte Carlo method ,Particle ,Limit (mathematics) ,Radiation ,Electronic, Optical and Magnetic Materials ,Computational physics - Abstract
The long-wavelength limit for radio radiation from high-energy particle cascades was calculated within the cascade theory taking into account the processes resulting in an negative excess. The results obtained were compared to the results of Monte Carlo numerical calculations.
- Published
- 2009
- Full Text
- View/download PDF
6. Long-wavelength coherent radio radiation of cascades. II. Consideration of the geomagnetic field effect
- Author
-
V. A. Chechin and V. A. Tsarev
- Subjects
Physics ,Long wavelength ,Earth's magnetic field ,Cascade ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Limit (mathematics) ,Astrophysics ,Radiation ,Electronic, Optical and Magnetic Materials ,Computational physics - Abstract
The long-wavelength limit for radio radiation of extensive air showers was calculated within the cascade theory, taking into account the geomagnetic field effect. The results obtained were compared to the results of Monte Carlo numerical calculations.
- Published
- 2009
- Full Text
- View/download PDF
7. Study of the charge distribution of galactic cosmic rays and search for superheavy nuclei traces in olivine crystals from meteorites
- Author
-
N. M. Okateva, Alexander Bagulya, N. G. Polukhina, N. I. Starkov, L. A. Goncharova, M. S. Vladimirov, N. S. Konovalova, V. A. Tsarev, A. I. Ivliev, L. L. Kashkarov, G. V. Kalinina, A. B. Aleksandrov, and A. S. Rusetskii
- Subjects
Cosmic ray spallation ,Physics ,Olivine ,Meteorite ,Fully automated ,engineering ,Charge density ,Cosmic ray ,Astrophysics ,Ultra-high-energy cosmic ray ,Superheavy Elements ,engineering.material ,Electronic, Optical and Magnetic Materials - Abstract
The search for and identification of energetic nuclei of superheavy elements of cosmic rays in olivine crystals frommeteorites, currently performedwithin the Olympia project [1], are based on measurements of dynamic and geometrical parameters of tracks, i.e., chemically etchable regions of the traces of slowing down of these nuclei before their stop, using the fully automated PAVIKOM measuring system [2].
- Published
- 2008
- Full Text
- View/download PDF
8. Results of the Monte Carlo simulation of the LORD experiment with allowance made for the antenna system parameters and galactic noise effect
- Author
-
I. A. Krol, G. A. Gusev, and V. A. Tsarev
- Subjects
Hybrid Monte Carlo ,Physics ,Monte Carlo method ,System parameters ,Dynamic Monte Carlo method ,Monte Carlo method in statistical physics ,Statistical physics ,Polarization (waves) ,Cosmic noise ,Electronic, Optical and Magnetic Materials - Abstract
The results of the Monte Carlo simulation of the LORD experiment are presented for two types of antenna systems with various parameters. The effect of possible polarization mismatch and galactic noise “percolation” are taken into consideration.
- Published
- 2007
- Full Text
- View/download PDF
9. Two-channel scheme for dark matter particle detection based on a low-temperature magnetic calorimeter
- Author
-
A. M. Tskhovrebov, V. A. Tsarev, Aleksander I. Golovashkin, G. A. Gusev, B. N. Lomonosov, and L. N. Zherikhina
- Subjects
Nuclear physics ,SQUID ,Physics ,Range (particle radiation) ,Interferometry ,Recoil ,Calorimeter (particle physics) ,law ,Dark matter ,General Physics and Astronomy ,Particle ,Minimal Supersymmetric Standard Model ,law.invention - Abstract
Problems of dark matter (DM) particle detection are briefly reviewed. An original two-channel scheme for direct detection of cosmic DM particles is proposed. This scheme is based on a superlow-temperature calorimeter which includes a nuclear spin system whose magnetic response is measured by a quantum interferometer (SQUID). Low threshold and the capability for efficiently suppressing the recoil-electron background are the most important advantages of the proposed scheme. They make it possible to detect DM particles in the range of extremely low recoil energies and carry out direct DM search with high sensitivity.
- Published
- 2007
- Full Text
- View/download PDF
10. Modeling of the LORD (Lunar Orbital Radio Detector) experiment with regard to the antenna directivity diagram, radiation polarization, and galactic noise
- Author
-
I. A. Krol, V. A. Tsarev, and G. A. Gusev
- Subjects
Physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Cosmic ray ,Radiation ,Polarization (waves) ,Directivity ,Electronic, Optical and Magnetic Materials ,Directivity diagram ,Optics ,Neutrino ,business ,Cosmic noise - Abstract
With the aim of the best approximation to the actual conditions of the LORD experiment on detection of ultrahigh-energy cosmic rays and neutrinos, the experiment modeling algorithm is refined by allowing for the parameters of the directivity diagram, polarization mismatch, and galactic noise.
- Published
- 2007
- Full Text
- View/download PDF
11. Chiral effect of electrons from supernova outbursts in the neutron fireball model
- Author
-
N. G. Polukhina, A. V. Uryson, V. A. Tsarev, and G. A. Gusev
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Nuclear Theory ,Astrophysics ,Electron ,Asymmetry ,Electronic, Optical and Magnetic Materials ,Organic molecules ,Neutron star ,Supernova ,Lorentz factor ,symbols.namesake ,symbols ,Neutron ,Pair-instability supernova ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
The previously proposed idea about the possible role of neutrons released during the supernova (SN) outburst as a source of polarized electrons causing chiral asymmetry of organic molecules in interstellar gas—dust clouds is developed. A specific physical mechanism of removal of a large number of free neutrons beyond the dense SN shell via the relativistic neutron fireball with a Lorentz factor on the order of 100 is considered. Estimations show high efficiency of the chiral effect of electrons from the SN in the mechanism under consideration.
- Published
- 2007
- Full Text
- View/download PDF
12. A Relativistic Neutron Fireball from a Supernova Explosion as a Possible Source of Chiral Influence
- Author
-
A. V. Uryson, G. A. Gusev, T. Saito, and V. A. Tsarev
- Subjects
Physics ,Evolution, Chemical ,Extraterrestrial Environment ,Astrophysics::High Energy Astrophysical Phenomena ,Origin of Life ,Nuclear Theory ,Bremsstrahlung ,Stereoisomerism ,General Medicine ,Electron ,Plasma ,Interstellar medium ,Lorentz factor ,symbols.namesake ,Supernova ,Models, Chemical ,Orders of magnitude (time) ,Space and Planetary Science ,symbols ,Neutron ,Atomic physics ,Elementary Particles ,Ecology, Evolution, Behavior and Systematics - Abstract
We elaborate on a previously proposed idea that polarized electrons produced from neutrons, released in a supernova (SN) explosion, can cause chiral dissymmetry of molecules in interstellar gas-dust clouds. A specific physical mechanism of a relativistic neutron fireball with Lorentz factor of the order of 100 is assumed for propelling a great number of free neutrons outside the dense SN shell. A relativistic chiral electron-proton plasma, produced from neutron decays, is slowed down owing to collective effects in the interstellar plasma. As collective effects do not involve the particle spin, the electrons can carry their helicities to the cloud. The estimates show high chiral efficiency of such electrons. In addition to this mechanism, production of circularly polarized ultraviolet photons through polarized-electron bremsstrahlung at an early stage of the fireball evolution is considered. It is shown that these photons can escape from the fireball plasma. However, for an average density of neutrals in the interstellar medium of the order of 0.2 cm(-3) and at distances of the order of 10 pc from the SN, these photons will be absorbed with a factor of about 10(-7) due to the photoeffect. In this case, their chiral efficiency will be about five orders of magnitude less than that for polarized electrons.
- Published
- 2007
- Full Text
- View/download PDF
13. OVERVIEW OF THE LORD EXPERIMENT (LUNAR ORBITAL RADIO DETECTOR)
- Author
-
V. A. Tsarev, V. A. Ryabov, N. G. Polukhina, V. A. Chechin, T. Saito, E. L. Feinberg, G. A. Gusev, V. K. Sysoev, K. M. Pichkadze, and B. N. Lomonosov
- Subjects
Physics ,Nuclear and High Energy Physics ,Detector ,Astronomy and Astrophysics ,Astrophysics ,Atomic and Molecular Physics, and Optics - Published
- 2006
- Full Text
- View/download PDF
14. The concept of a lunar orbital radio-wave telescope for the detection of ultrahigh-energy cosmic rays and neutrinos
- Author
-
E. L. Feĭnberg, K. M. Pichkhadze, V. K. Sysoev, N. G. Polukhina, B. N. Lomonosov, G. A. Gusev, V. A. Ryabov, V. A. Chechin, T. Saito, and V. A. Tsarev
- Subjects
Physics ,PAMELA detector ,Cosmic microwave background ,Computational Mechanics ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,Astrophysics ,law.invention ,Telescope ,Cosmic neutrino background ,Mechanics of Materials ,law ,Observational cosmology ,Ultra-high-energy cosmic ray ,Neutrino - Published
- 2006
- Full Text
- View/download PDF
15. Detection of ultrahigh-energy cosmic rays and neutrinos by radio method using artificial lunar satellites
- Author
-
N. G. Polukhina, G. A. Gusev, V. A. Ryabov, K. M. Pichkhadze, V. K. Sysoev, V. A. Tsarev, B. N. Lomonosov, E. L. Feinberg, T. Saito, and V. A. Chechin
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics ,Spectral line ,Cosmic neutrino background ,Effective mass (solid-state physics) ,Neutrino detector ,Space and Planetary Science ,Ultrahigh energy ,Neutrino - Abstract
An estimate of the feasibility of the ultrahigh-energy cosmic ray and neutrino detection using a lunar satellite-borne radio receiver is presented. The data obtained in the proposed experiment will make resolving the current contradictions in the ultrahigh-energy cosmic ray spectra measured with the major ground-based instruments possible. Moreover, they will enable us to considerably extend the accessible energy range and to check predictions of various models of the origin of the highest-energy particles in the Universe. At the same time the lunar radio detector provides a means of searching for ultrahigh-energy neutrinos with a high sensitivity combined with a very large target effective mass.
- Published
- 2006
- Full Text
- View/download PDF
16. Determination of the EAS cascade-curve shape by the radio method
- Author
-
V. A. Chechin and V. A. Tsarev
- Subjects
Physics ,Mechanics of Materials ,Cascade ,Mathematical analysis ,Computational Mechanics ,General Physics and Astronomy ,Curve shape - Published
- 2003
- Full Text
- View/download PDF
17. Quasi-fractal PBG structures for Multi-Beam Devices
- Author
-
P. D. Shalaev, V. A. Tsarev, and D. A. Nesterov
- Subjects
010302 applied physics ,Materials science ,business.industry ,Physics ,QC1-999 ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fractal ,Optics ,0103 physical sciences ,Multi beam ,0210 nano-technology ,business - Published
- 2018
- Full Text
- View/download PDF
18. On satellite-based detection of ultrahigh-energy cosmic rays by the radio method
- Author
-
V. A. Chechin and V. A. Tsarev
- Subjects
Physics ,PAMELA detector ,Mechanics of Materials ,law ,Cosmic infrared background ,Computational Mechanics ,General Physics and Astronomy ,Astronomy ,Satellite ,Cosmic ray ,Ultrahigh energy ,law.invention - Published
- 2002
- Full Text
- View/download PDF
19. Synthesis output double-mode sector resonators multibeam devices of the klystron type
- Author
-
I. O. Chigurov and V. A. Tsarev
- Subjects
Physics ,Resonator ,Klystron ,law ,business.industry ,Mode (statistics) ,Electrical engineering ,business ,Coupling coefficient of resonators ,law.invention - Published
- 2014
- Full Text
- View/download PDF
20. Charge composition of the VVH cosmic ray nuclei in the energy range of 1–2GeV/nucleon: The results of the track investigation in olivine from the Marjalahti pallasite
- Author
-
V. A. Tsarev, N. S. Konovalova, L. L. Kashkarov, A. I. Ivliev, G. V. Kalinina, A. S. Roussetski, L. A. Goncharova, N. G. Polukhina, M.S. Vladymyrov, A. V. Bagulya, N. I. Starkov, and N. M. Okateva
- Subjects
Physics ,Range (particle radiation) ,Radiation ,Olivine ,Track (disk drive) ,Pallasite ,Cosmic ray ,Charge (physics) ,engineering.material ,Nuclear physics ,Meteorite ,engineering ,Nucleon ,Instrumentation - Abstract
New results of the measurements performed in the “OLIMPIA” project framework of the relative abundance of superheavy ( Z ≥ 50) nuclei in galactic cosmic rays are presented. The method of detection and analysis of nucleus tracks in olivine crystals from the Marjalahti pallasite was based on the combination of the multistage etching of individual crystals and measurement of the track parameters (etchable length and corresponding track-etching rate) on the completely automated PAVICOM setup.
- Published
- 2009
- Full Text
- View/download PDF
21. Current status of the LORD experiment
- Author
-
G. A. Gusev, B. N. Lomonosov, V. K. Sysoev, N. G. Polukhina, V. A. Tsarev, V. A. Chechin, K. M. Pichkhadze, and V. A. Ryabov
- Subjects
Physics ,Nuclear and High Energy Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Lunar orbit ,Computational physics ,Cascade ,Neutrino ,Instrumentation ,Cherenkov radiation ,Radio wave - Abstract
The current status of the Lunar Orbit Radio Detector (LORD) experiment to search for ultra-high-energy cosmic rays (UHECR), using the Moon as both a target for the UHECR interaction and radiator for production Cherenkov radio emission. The scientific potential of this new technology is estimated for a reasonable configuration of experiment by analytic modeling. It is shown that such radio wave experiment can be competitive with modern projects in this field. The simplest technically realizable architecture for the first generation of the LORD instrument, disposed on a standard lunar space platform designed by Lavochkin association, is elaborated. A Monte Carlo simulation is performed, including effects associated with the finite depth of the regolith layer. The signature of the cascade signal is different from the background, and discrimination between CR and neutrino cascades might be possible.
- Published
- 2009
- Full Text
- View/download PDF
22. Contemporary status of the OPERA experiment for detecting νμ → ντ oscillations in a νμ beam
- Author
-
S. G. Dmitrievsky, A. M. Anokhina, V. G. Ryasny, V. A. Matveev, M. M. Chernyavsky, A. S. Malgin, O. G. Ryazhskaya, N. G. Polukhina, V. A. Tsarev, A.G. Olshevsky, N. Yu. Agafonova, M. S. Vladimirov, V. V. Boyarkin, S. G. Zemskova, R. I. Enikeev, Timur Dzhatdoev, V. I. Osedlo, T. M. Roganova, A. V. Bagulya, V. F. Yakushev, Artem Chukanov, P. A. Publichenko, V. I. Galkin, Yu. A. Gornushkin, N. I. Starkov, G. I. Orlova, G. P. Sazhina, and V. Nikitina
- Subjects
Nuclear physics ,Physics ,Particle physics ,Muon ,Opera ,Hadron ,General Physics and Astronomy ,Software upgrade ,Neutrino ,Beam (structure) - Abstract
The first results of the physical stage of the OPERA experiment in 2007, when observation of oscillations of gvμ into gvτ started, are discussed. Thirty eight events related to neutrino interactions in emulsion blocks (bricks) are found. The underground muon spectrum and the μ+/μ− ratio are obtained. The results of using detachable emulsion packs (changeable sheets) and accuracy of predictions of neutrino interaction vertices in emulsion layers are discussed. The results of the hardware and software upgrade of the automatic emulsion scanning system PAVIKOM are reported.
- Published
- 2009
- Full Text
- View/download PDF
23. Chiral effect caused by shock waves from the supernova explosion
- Author
-
V. A. Tsarev
- Subjects
Shock wave ,Physics ,High Energy Physics::Lattice ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Interstellar cloud ,Astronomy ,Astrophysics ,Electron ,Electronic, Optical and Magnetic Materials ,Universality (dynamical systems) ,Shock waves in astrophysics ,Supernova ,Neutrino ,Astrophysics::Galaxy Astrophysics - Abstract
The chiral effect of the switch-on shock wave from the supernova (SN) on interstellar cloud organics was estimated. It was found that this effect is weak and cannot violate the chiral universality of the influence caused by left-polarized electrons and neutrino from the SN.
- Published
- 2008
- Full Text
- View/download PDF
24. Relativistic neutron fireball from a supernova explosion as a possible source of chiral effect. The role of bremsstrahlung photons
- Author
-
V. A. Tsarev and G. A. Gusev
- Subjects
Physics ,Photon ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Nuclear Theory ,Bremsstrahlung ,Astrophysics ,Electron ,Asymmetry ,Electronic, Optical and Magnetic Materials ,Interstellar medium ,Lorentz factor ,symbols.namesake ,Supernova ,symbols ,Neutron ,Nuclear Experiment ,media_common - Abstract
We develop the idea, proposed earlier, of a possible role of neutrons, released in a supernova (SN) explosion, as a source of polarized electrons that cause chiral asymmetry of organic molecules in interstellar gas-dust clouds. The neutrons are carried away from the dense SN shell by a relativistic neutron fireball with Lorentz factor γ of order 100. At the early stage of this carrying away, the ejected polarized electrons generate circularly polarized photons as a result of bremsstrahlung in the fireball plasma. The photons of energy near 5 eV in the ultraviolet part of the spectrum show a high efficiency of the chiral effect. In the favorable case of low absorption in the interstellar medium this mechanism may appear to be more (by two orders of magnitude) efficient than the chiral effect of the polarized electrons from the same fireball.
- Published
- 2007
- Full Text
- View/download PDF
25. Search for neutrino oscillations vμ → vτ in CERN → Gran Sasso high-energy neutrino beam (the OPERA experiment)
- Author
-
T. M. Roganova, O. G. Ryazhskaya, Yu. A. Garnushkin, V. A. Tsarev, A.G. Olshevsky, N. G. Polukhina, V. I. Galkin, and V. A. Matveev
- Subjects
ICARUS ,Physics ,High energy ,Particle physics ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,Opera ,General Physics and Astronomy ,Neutrino beam ,Nuclear physics ,Physics::Popular Physics ,Physics::Accelerator Physics ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Nuclear Experiment ,Neutrino oscillation ,Lepton - Abstract
The main purpose of the OPERA experiment is the direct observation of neutrino oscillations (vμ → vτ) in the vμ beam from the CERN accelerator through the direct detection of τ leptons in nuclear emulsions at the Gran Sasso National Underground Laboratory. Some aspects of the use of the Russian PAVICOM facility for processing and analyzing the data obtained from the OPERA experiment are discussed.
- Published
- 2007
- Full Text
- View/download PDF
26. Problems and horizons of the search for tracks of heavy and superheavy nuclei in olivine crystals from meteorites (OLIMPIYA project)
- Author
-
N. I. Starkov, E. L. Feinberg, V. L. Ginzburg, N. G. Polukhina, and V. A. Tsarev
- Subjects
Physics ,Olivine ,Meteorite ,Mechanics of Materials ,Nuclear Theory ,Computational Mechanics ,engineering ,General Physics and Astronomy ,Cosmic ray ,Astrophysics ,engineering.material ,Nuclear Experiment - Abstract
In this paper, we consider the nuclear-physical and astrophysical aspects of investigations associated with the search for heavy and superheavy nuclei in the composition of cosmic rays. We also discuss the potentiality of searching for tracks of these nuclei in the olivine crystals found in meteorites with the use of the completely automated PAVICOM setup, which was designed for the scanning and processing of tracks of particles.
- Published
- 2005
- Full Text
- View/download PDF
27. Critical review of theoretical models for anomalous effects in deuterated metals
- Author
-
Mario Rabinowitz, V. A. Tsarev, V. A. Chechin, and Yeong E. Kim
- Subjects
Physics ,Theoretical physics ,Physics and Astronomy (miscellaneous) ,Deuterium ,General Mathematics ,Theoretical models ,Cold fusion - Abstract
We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.
- Published
- 1994
- Full Text
- View/download PDF
28. Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector
- Author
-
David Petyt, D. E. Jaffe, John Marshall, J. K. De Jong, D. G. Michael, M. Kordosky, M. D. Messier, Andrew Blake, A. C. Weber, Christopher G. White, Peter D. Barnes, H. R. Gallagher, D. A. Harris, B. Viren, N. Mayer, P. Schreiner, S. R. Mishra, G. Tzanakos, R. L. Talaga, G. Koizumi, R. J. Nichol, Matthew L Strait, S. M S Kasahara, N. Tagg, T. Osiecki, A. R. Erwin, G.D. Barr, P. Stamoulis, A. Sousa, J. Schneps, I. Z. Danko, J. K. Nelson, K. Zhang, P. Lucas, Z. Krahn, Joao A B Coelho, Alec Habig, J. J. Kim, R. B. Patterson, N. E. Devenish, D. A. Jensen, Ž Pavlović, Juan Pedro Ochoa-Ricoux, Juergen Thomas, R. A. Rameika, P. J. Litchfield, Karol Lang, A. E. Kreymer, Mcd Sanchez, John C. Mitchell, J. J. Evans, A. Himmel, Z. Isvan, Marvin L Marshak, L. Mualem, A. Holin, K. Grzelak, S. Childress, H. A. Rubin, R. P. Litchfield, S. J. Coleman, R. Ospanov, Caleb Smith, Ken Heller, C. D. Moore, J. M. Paley, D. J. Auty, A. M. McGowan, P. Gouffon, N. West, Warner A. Miller, V. A. Ryabov, P. A. Rodrigues, M. Watabe, D. S. Ayres, C. Backhouse, Philip Harris, G. J. Bock, E. Falk, D. J. Koskinen, T. Kafka, R. Pittam, Gregory J Pawloski, R. Armstrong, Douglas Wright, W. P. Oliver, M. V. Frohne, Jorge G. Morfin, S. L. Mufson, C. James, D. Cherdack, William L. Barrett, P. Shanahan, R. Toner, B. Rebel, M. Dorman, T. C. Nicholls, W. A. Mann, A. Godley, Niki Saoulidou, G. F. Pearce, E. Grashorn, Carlos Escobar, K. E. Arms, B. C. Choudhary, T. Yang, R. K. Plunkett, D. Bhattacharya, C. Andreopoulos, J. Hartnell, L. Loiacono, Sacha E Kopp, R. Gran, R. Mehdiyev, Daniel P Cronin-Hennessy, R. Zwaska, A. J. Culling, M. Bishai, A. Rahaman, R. Hatcher, G. Tinti, C. Rosenfeld, John Derek Chapman, C. J. Metelko, J. R. Meier, P. Adamson, L. Whitehead, J. Urheim, V. Paolone, C. R. Bower, M. Zois, J. A. Musser, R. C. Webb, W. Smart, D. Bogert, V. A. Tsarev, V. K. Semenov, P. Vahle, S. Cavanaugh, D. J. Boehnlein, Jian Ma, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, M. C. Goodman, Harvey B Newman, M. V. Diwan, T. M. Raufer, G. M. Irwin, and G. J. Feldman
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Cross section (physics) ,MINOS ,Antimatter ,High Energy Physics::Experiment ,Fermilab ,Neutrino ,Charged current ,Lepton - Abstract
The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood., accepted by PRD
- Published
- 2010
29. Observation of muon intensity variations by season with the MINOS far detector
- Author
-
R. Toner, B. Rebel, R. Ospanov, K. E. Arms, A. E. Kreymer, H. R. Gallagher, D. A. Harris, Sacha E Kopp, R. Gran, D. E. Jaffe, N. Mayer, Marvin L Marshak, G. Tzanakos, J. Hartnell, G. J. Bock, C. Rosenfeld, Daniel P Cronin-Hennessy, T. M. Raufer, S. R. Mishra, G. Koizumi, G. M. Irwin, Ken Heller, G. J. Feldman, J. J. Evans, B. R. Becker, P. Lucas, T. Osiecki, P. Adamson, L. Whitehead, M. C. Sanchez, Philip Harris, J. Urheim, J. Reichenbacher, M. D. Messier, R. Mehdiyev, A. Sousa, Christopher G. White, M. Kordosky, R. J. Nichol, N. E. Devenish, C. R. Bower, M. Zois, P. J. Litchfield, A. Holin, S. Childress, Harvey B Newman, Andrew Blake, R. B. Patterson, J. K. De Jong, J. A. Musser, Alec Habig, K. Korman, A. Rahaman, T. Patzak, P. Gouffon, B. Viren, E. W. Grashorn, John C. Mitchell, C. D. Moore, J. H. Cobb, D. J. Auty, John J. Barnett, R. L. Talaga, H. A. Rubin, J. K. Nelson, A. M. McGowan, D. A. Jensen, K. Grzelak, Douglas Wright, N. Tagg, B. Speakman, Warner A. Miller, John Marshall, Matthew L Strait, G.D. Barr, T. H. Fields, R. Pittam, R. Armstrong, P. Stamoulis, W. P. Oliver, R. C. Webb, Brajesh C Choudhary, S. L. Mufson, T. C. Nicholls, D. Cherdack, V. A. Ryabov, M. V. Frohne, M. Bishai, Juergen Thomas, P. A. Rodrigues, C. Backhouse, P. Vahle, M. Watabe, S. J. Coleman, T. Kafka, S. Cavanaugh, Scott Osprey, Gregory J Pawloski, W. Smart, Caleb Smith, R. Zwaska, A. J. Culling, E. Falk, Jorge G. Morfin, J. M. Paley, Juan Pedro Ochoa-Ricoux, C. James, D. J. Boehnlein, A. Himmel, Z. Isvan, G. Tinti, L. Mualem, M. Dorman, C. Andreopoulos, Niki Saoulidou, G. F. Pearce, E. A. Peterson, K. Zhang, L. Loiacono, P. Schreiner, R. A. Rameika, D. Bogert, Karol Lang, Carlos Escobar, R. K. Plunkett, V. A. Tsarev, John Derek Chapman, D. G. Michael, C. J. Metelko, J. R. Meier, T. Yang, D. J. Koskinen, R. Hatcher, A. C. Weber, S. M S Kasahara, Z. Krahn, William L. Barrett, P. Shanahan, B. Bock, W. A. Mann, N. West, Jian Ma, M. A. Thomson, D. Naples, D. S. Ayres, Stanley G. Wojcicki, A. Godley, J. Hylen, M. C. Goodman, J. Schneps, I. Z. Danko, M. V. Diwan, J. L. Thron, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Background radiations ,Nuclear and High Energy Physics ,Particle physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon ,Neutrino ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Cosmic rays ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Muon ,010308 nuclear & particles physics ,Cosmic ray muons ,pion ,cosmic ray detectors ,and other elementary particle detectors ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,MINOS ,Muon flux ,High Energy Physics::Experiment ,Production (computer science) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Intensity (heat transfer) - Abstract
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan MN, USA, has collected over 67 million cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, $\alpha_T$, relating changes in the muon rate to changes in atmospheric temperature was found to be: $\alpha_T = 0.874 \pm 0.009$ (stat.) $\pm 0.010$ (syst.). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to $\alpha_T$ due to the different masses and lifetimes. This allows the measured value of $\alpha_T$ to be interpreted as a measurement of the K/$\pi$ ratio for $E_{p}\gtrsim$\unit[7]{TeV} of $0.13 \pm 0.08$, consistent with the expectation from collider experiments., Comment: 8 pages, 9 figures, accepted for publication in Phys. Rev. D
- Published
- 2010
- Full Text
- View/download PDF
30. Search for Muon-Neutrino to Electron-Neutrino Transitions in MINOS
- Author
-
B. Speakman, K. Zhang, M. V. Diwan, D. Cherdack, Karol Lang, M. Bishai, E. Falk, G. M. Irwin, E. Grashorn, P. A. Rodrigues, G. J. Feldman, M. Watabe, A. Belias, R. Hatcher, N. West, C. Andreopoulos, T. Kafka, D. G. Michael, D. E. Jaffe, A. Himmel, Z. Isvan, L. Loiacono, L. Mualem, R. Toner, H. R. Gallagher, B. Rebel, D. A. Harris, M. D. Messier, D. S. Ayres, G. Tinti, J. J. Evans, A. C. Weber, R. Zwaska, J. Boehm, Harvey B Newman, J. L. Thron, A. J. Culling, S. Childress, M. Betancourt, T. Yang, P. Schreiner, Christopher G. White, N. Mayer, A. Godley, A. Holin, C. Rosenfeld, S. M S Kasahara, T. C. Nicholls, C. D. Moore, H. Zheng, K. E. Arms, D. J. Koskinen, A. R. Erwin, C. Howcroft, G. Tzanakos, P. Adamson, L. Whitehead, Sacha E Kopp, J. K. De Jong, Douglas Wright, R. Gran, G. J. Bock, Z. Krahn, G. Koizumi, J. Schneps, W. Smart, S. L. Mufson, R. C. Webb, I. Z. Danko, Daniel P Cronin-Hennessy, Alec Habig, John Derek Chapman, P. Vahle, S. Cavanaugh, D. J. Boehnlein, J. Urheim, R. J. Nichol, John C. Mitchell, C. R. Bower, C. J. Metelko, J. R. Meier, A. Rahaman, J. Reichenbacher, M. Zois, Philip Harris, K. Grzelak, J. K. Nelson, R. P. Litchfield, J. A. Musser, William L. Barrett, P. Shanahan, S. J. Coleman, Jian Ma, M. A. Thomson, D. A. Jensen, D. Bogert, D. Naples, Stanley G. Wojcicki, W. A. Mann, Brajesh C Choudhary, R. Ospanov, V. A. Tsarev, J. Hylen, R. H. Bernstein, A. Para, Caleb Smith, M. C. Goodman, R. B. Patterson, J. M. Paley, M. Dorman, A. M. McGowan, Niki Saoulidou, G. F. Pearce, R. Mehdiyev, R. Pittam, V. A. Ryabov, C. Backhouse, M. V. Frohne, P. Gouffon, D. R. Ward, T. Patzak, Gregory J Pawloski, Jorge G. Morfin, C. James, B. Viren, R. L. Talaga, N. Tagg, G.D. Barr, Juergen Thomas, A. Sousa, N. E. Devenish, P. J. Litchfield, D. J. Auty, Warner A. Miller, Carlos Escobar, R. K. Plunkett, P. Lucas, A. E. Kreymer, Marvin L Marshak, John Marshall, J. H. Cobb, B. R. Becker, M. C. Sanchez, Ken Heller, Xian-Rong Huang, Peter D. Barnes, David Petyt, T. M. Raufer, S. R. Mishra, Matthew L Strait, P. Stamoulis, Joao A B Coelho, Ž Pavlović, R. A. Rameika, Juan Pedro Ochoa-Ricoux, M. Kordosky, Andrew Blake, H. A. Rubin, R. Armstrong, W. P. Oliver, D. Bhattacharya, J. Hartnell, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Particle physics ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Beams in particle accelerators ,010308 nuclear & particles physics ,Hadron ,FOS: Physical sciences ,General Physics and Astronomy ,Elementary particle ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,Ordinary neutrinos (nuW bosons ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,CP violation ,Neutrino ,010306 general physics ,Neutrino oscillation ,Lepton - Abstract
This letter reports on a search for $\nu_\mu \to \nu_e$ transitions by the MINOS experiment based on a \unit[$3.14\times10^{20}$]{protons-on-target} exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of $27\pm 5 {\rm (stat.)} \pm 2 {\rm (syst.)$ events predicted by the measurements in the Near Detector. If interpreted in terms of $\nu_\mu \to \nu_e$ oscillations, this 1.5 $\sigma$ excess of events is consistent with $\sin^{2}(2\theta_{13})$ comparable to the CHOOZ limit when $|\delmsq{}|$=\unit[2.43$\times 10^{-3}$] {${\rm eV^{2}}$} and \sinsq{23}=1.0 are assumed., Comment: 5 pages, 4 figures, submitted to Phys. Rev. Lett
- Published
- 2009
- Full Text
- View/download PDF
31. New Results on Cold Nuclear Fusion: A Review of the Conference on Anomalous Nuclear Effects in Deuterium/Solid Systems, Provo, Utah, October 22–24, 1990
- Author
-
David H. Worledge and V. A. Tsarev
- Subjects
Physics ,Nuclear physics ,Deuterium ,020209 energy ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,General Engineering ,02 engineering and technology ,Fusion power ,01 natural sciences ,010305 fluids & plasmas ,Cold fusion - Abstract
(1991). New Results on Cold Nuclear Fusion: A Review of the Conference on Anomalous Nuclear Effects in Deuterium/Solid Systems, Provo, Utah, October 22–24, 1990. Fusion Technology: Vol. 20, No. 4P1, pp. 484-508.
- Published
- 1991
- Full Text
- View/download PDF
32. On production of charmed nuclei in charm exchange (D, π) reactions at thecτ-factory
- Author
-
V. A. Tsarev, S. A. Bunyatov, N. I. Starkov, and V. V. Lyukov
- Subjects
Nuclear physics ,Physics ,Baryon ,Particle physics ,Intersection ,Plane (geometry) ,Yield (chemistry) ,Production (computer science) ,Charm (quantum number) ,Lambda ,Beam (structure) - Abstract
The yield of charmed nuclei with the\(\Lambda _C^ + \)-baryon is estimated for a thin (100 μm) target placed at a distanceR=(30÷100) μm from thecτ-factory beam intersection point. The requirements to thecτ-factory beams for carring out the experiment on, the search for charmed nuclei are formulated: the luminosityL≥5·1033cm−2s−1, the beam cross dimensions σ≤3μm at least in one plane.
- Published
- 1991
- Full Text
- View/download PDF
33. Search for Active Neutrino Disappearance Using Neutral-Current Interactions in the MINOS Long-Baseline Experiment
- Author
-
P. Adamson, C. Andreopoulos, K. E. Arms, R. Armstrong, D. J. Auty, D. S. Ayres, C. Backhouse, B. Baller, G. Barr, W. L. Barrett, B. R. Becker, A. Belias, R. H. Bernstein, D. Bhattacharya, M. Bishai, A. Blake, G. J. Bock, J. Boehm, D. J. Boehnlein, D. Bogert, C. Bower, E. Buckley-Geer, S. Cavanaugh, J. D. Chapman, D. Cherdack, S. Childress, B. C. Choudhary, J. H. Cobb, S. J. Coleman, A. J. Culling, J. K. de Jong, M. Dierckxsens, M. V. Diwan, M. Dorman, S. A. Dytman, C. O. Escobar, J. J. Evans, E. Falk Harris, G. J. Feldman, M. V. Frohne, H. R. Gallagher, A. Godley, M. C. Goodman, P. Gouffon, R. Gran, E. W. Grashorn, N. Grossman, K. Grzelak, A. Habig, D. Harris, P. G. Harris, J. Hartnell, R. Hatcher, K. Heller, A. Himmel, A. Holin, L. Hsu, J. Hylen, G. M. Irwin, M. Ishitsuka, D. E. Jaffe, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, J. J. Kim, M. S. Kim, G. Koizumi, S. Kopp, M. Kordosky, D. J. Koskinen, S. K. Kotelnikov, A. Kreymer, S. Kumaratunga, K. Lang, J. Ling, P. J. Litchfield, R. P. Litchfield, L. Loiacono, P. Lucas, J. Ma, W. A. Mann, A. Marchionni, M. L. Marshak, J. S. Marshall, N. Mayer, A. M. McGowan, J. R. Meier, M. D. Messier, C. J. Metelko, D. G. Michael, W. H. Miller, S. R. Mishra, C. D. Moore, J. Morfín, L. Mualem, S. Mufson, S. Murgia, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, T. C. Nicholls, J. P. Ochoa-Ricoux, W. P. Oliver, R. Ospanov, J. Paley, V. Paolone, A. Para, T. Patzak, Ž. Pavlović, G. Pawloski, G. F. Pearce, C. W. Peck, D. A. Petyt, R. Pittam, R. K. Plunkett, A. Rahaman, R. A. Rameika, T. M. Raufer, B. Rebel, J. Reichenbacher, P. A. Rodrigues, C. Rosenfeld, H. A. Rubin, V. A. Ryabov, M. C. Sanchez, N. Saoulidou, J. Schneps, P. Schreiner, P. Shanahan, W. Smart, C. Smith, A. Sousa, B. Speakman, P. Stamoulis, M. Strait, N. Tagg, R. L. Talaga, M. A. Tavera, J. Thomas, M. A. Thomson, J. L. Thron, G. Tinti, I. Trostin, V. A. Tsarev, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, D. R. Ward, M. Watabe, A. Weber, R. C. Webb, A. Wehmann, N. West, C. White, S. G. Wojcicki, D. M. Wright, T. Yang, K. Zhang, R. Zwaska, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Particle physics ,etc ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutral current ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,General Physics and Astronomy ,right-handed neutrinos ,01 natural sciences ,High Energy Physics - Experiment ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,High Energy Physics - Experiment (hep-ex) ,Neutral currents ,MINOS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Baseline (configuration management) ,Non-standard-model neutrinos - Abstract
We report the first detailed comparisons of the rates and spectra of neutral-current neutrino interactions at two widely separated locations. A depletion in the rate at the far site would indicate mixing between muon neutirnos and a sterile particle. No anomalous depletion in the reconstructed energy spectrum is observed. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra limits the fraction of muon neutrino oscillating to a sterile neutrino to be below 0.68 at 90% confidence level. A less stringent limit due to a possible contribution to the measured neutral-current event rate at the far site from electron neutrino appearance at the current experimental limit is also presented., Comment: 5 pages, 3 figures
- Published
- 2008
- Full Text
- View/download PDF
34. The magnetized steel and scintillator calorimeters of the MINOS experiment
- Author
-
J. J. Grudzinski, R. J. Nichol, Q. K. Wu, N. Tagg, R. Piteira, L. E. Price, G.D. Barr, T. Osiecki, B. R. Becker, A. Sousa, Francisco Yumiceva, A. Byon-Wagner, A. C. Weber, Alec Habig, D.S. Damiani, M. C. Sanchez, John Miller, M. A. Barker, M. Ignatenko, Carlos Escobar, J. K. Nelson, P. J. Litchfield, R. K. Plunkett, Juergen Thomas, J. Trevor, D. Pushka, H. R. Gallagher, D. E. Reyna, Raymond Lee, S. Childress, E. Maher, J. Boehm, E. Falk Harris, C. D. Moore, J. Kilmer, P. Adamson, M. Proga, M. V. Frohne, P. Gouffon, D. Indurthy, D. A. Harris, R. C. Webb, J. A. Thompson, S. M. Seun, M. Dorman, T. Alexopoulos, C. Rosenfeld, S. M S Kasahara, L. Wai, W.W.M. Allison, S. Boyd, E. A. Peterson, R. Ospanov, P. S. Miyagawa, B. Baller, William L. Barrett, P. Shanahan, B. Bock, M. Kostin, Harvey B Newman, J. L. Thron, P. N. Smith, M. Gebhard, B. Viren, Paul Schoessow, S.R. Mishra, T. Bergfeld, Yu. A. Gornushkin, T. M. Raufer, H. Ping, K. Grzelak, A. L. Read, W. Smart, M. D. Messier, A. M. McGowan, K. Ruddick, A. S. Ladran, W. A. Mann, John Oliver, G. I. Merzon, N. West, John Marshall, J. Urheim, S. Madani, V. Paolone, C. R. Bower, M. Zois, J. A. Musser, A. De Santo, D. J. Koskinen, P. Stamoulis, Ž Pavlović, Juan Pedro Ochoa-Ricoux, S. Murgia, A. Lebedev, M. Vakili, Warner A. Miller, G. M. Irwin, Weonjong Lee, D. Rahman, S. Avvakumov, Randall White, Gary Drake, A. D. Marino, H. A. Rubin, D. S. Ayres, W. Luebke, Christopher G. White, A. Belias, Y. Ho, R. L. Talaga, J. C. Yun, J. J. Evans, Carole C. Perry, L. Jenner, F. A. Nezrick, G. J. Feldman, E. Buckley-Geer, P. A. Symes, G. Tzanakos, V.A. Onuchin, C. Arroyo, A. Godley, W. P. Oliver, P. Lucas, R. Shivane, N. Felt, Marvin L Marshak, C. P. Ward, C. Howcroft, G. Koizumi, J. D. Cossairt, H. Zheng, D. R. Ward, H. J. Kang, C. Velissaris, B. C. Choudhary, T. Durkin, N. P. Longley, P. Schreiner, Ken Heller, R. H. Milburn, D. Krakauer, Reinhard Schwienhorst, T. Patzak, J. H. Cobb, B. Speakman, Kevin Anderson, S. J. Coleman, Hyun-Chul Kim, Peter D. Barnes, D. Bhattacharya, N. Grossman, M. J. Murtagh, R. Ford, J. Hartnell, Caleb Smith, E. P. Hartouni, E. Beall, D. A. Jensen, M. S. Kim, S. Kumaratunga, K. Vaziri, J. M. Paley, B. C. Barish, R. A. Rameika, J. W. Dawson, E. Tetteh-Lartey, M. Watabe, Andrew Blake, G. J. Alner, R. Ducar, V. J. Guarino, T. Kafka, R. Trendler, T. C. Nicholls, T. H. Fields, A. A. Wehmann, C. Andreopoulos, Philip Harris, M. Bishai, C. W. Peck, S. Chernichenko, H. Courant, Karol Lang, D. M. DeMuth, Ruben Saakyan, Sacha E Kopp, D. G. Michael, Thomas R. Chase, J. McDonald, O. Fackler, T. Joffe-Minor, W. G. Yan, R. Morse, A. J. Culling, D. Crane, Niki Saoulidou, G. F. Pearce, V. A. Ryabov, J. Gogos, E. Grashorn, V. Makeev, Jorge G. Morfin, C. James, M. P. Andrews, Anna Pla-Dalmau, R. P. Litchfield, N. Hill, Ji-Yong Liu, P.D. Shield, M. Dierckxsens, V. K. Semenov, P. Vahle, D. J. Boehnlein, C. Laughton, M. Kordosky, V. Smirnitsky, D. Bogert, C. Nelson, A. Marchionni, I. Trostin, G. J. Bock, Alexander Terekhov, L. Mualem, V. A. Tsarev, J. K. de Jong, P. M. Border, J. Hanson, R. Halsall, T. Yang, Douglas Wright, Anatael Cabrera, S. L. Mufson, M. Libkind, V. Bocean, B. Rebel, J. M. Swan, N. Pearson, V. Verebryusov, R. Hatcher, John Derek Chapman, J. R. Meier, P. Sullivan, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, M. V. Diwan, Keith Bechtol, D. A. Petyt, A. Stefanik, S. K. Kotelnikov, A. R. Erwin, J. Schneps, R. Andrews, R. Zwaska, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Solar neutrino ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,NuMI ,Nuclear physics ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Neutrino oscillation ,physics.ins-det ,Instrumentation ,Physics ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,Instrumentation and Detectors (physics.ins-det) ,Solar neutrino problem ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutrino detector ,MINOS ,Measurements of neutrino speed ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Neutrino - Abstract
The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper., Comment: Revised according to referee's comments. 91 pages, 43 figures, submitted to NIM. arXiv figures are greatly compressed, please see NIM itself or the Fermilab library server for full resolution figures
- Published
- 2008
- Full Text
- View/download PDF
35. Application of a nonlinear similarity method for calculation of space charge factor parameters for relativist electron beams with different forms of cross-section
- Author
-
N. A. Akafieva, D. A. Salnikova, and V. A. Tsarev
- Subjects
Physics ,Cross section (physics) ,Beam diameter ,Classical mechanics ,Transcendental equation ,Physics::Accelerator Physics ,M squared ,Laser beam quality ,Electron ,Space charge ,Beam (structure) ,Computational physics - Abstract
For calculation of a space charge factor for the shield beams such a solid beam, a hollow beam and a tape beam the approximate analytical expressions were obtained. Utilization these expressions allow manages without application of the transcendental equation and could be useful for determination optimal electrical and geometrical parameters of a relativistic and non-relativistic klystronpsilas beams.
- Published
- 2008
- Full Text
- View/download PDF
36. Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam
- Author
-
Jian Ma, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, P. A. Symes, S. K. Kotelnikov, V. A. Ryabov, J. Schneps, S. A. Dytman, M. V. Diwan, Gregory J Pawloski, Jorge G. Morfin, R. A. Rameika, C. James, A. Holin, N. Tagg, R. Pittam, G.D. Barr, G. M. Irwin, K. E. Arms, R. P. Litchfield, M. Kordosky, A. Godley, John Marshall, Sacha E Kopp, R. Gran, G. J. Feldman, Andrew Blake, A. Sousa, C. P. Ward, P. J. Litchfield, Philippe Lucas, John Miller, Brajesh C Choudhary, Juergen Thomas, Peter D. Barnes, S. Murgia, M. Bishai, D. J. Auty, B. Baller, M. D. Messier, G. I. Merzon, W. Smart, Warner A. Miller, N. West, G. Tinti, P. Vahle, Harvey B Newman, J. L. Thron, H. A. Rubin, D. S. Ayres, S. Cavanaugh, P. Adamson, D. J. Boehnlein, J. J. Evans, M. Dierckxsens, R. Armstrong, D. R. Ward, T. Patzak, A. C. Weber, W. P. Oliver, P. Stamoulis, A. Rahaman, T. C. Nicholls, G. J. Bock, J. K. de Jong, A. E. Kreymer, B. Speakman, E. A. Peterson, S. M S Kasahara, R. Ospanov, Marvin L Marshak, S. J. Coleman, S. M. Seun, M. Dorman, M. Ishitsuka, Caleb Smith, A. M. McGowan, K. Ruddick, Niki Saoulidou, B. Rebel, G. F. Pearce, J. Boehm, Ken Heller, J. M. Paley, S. Kumaratunga, E. Buckley-Geer, P. Gouffon, B. R. Becker, A. A. Wehmann, P. A. Rodrigues, M. A. Tavera, M. Watabe, William L. Barrett, P. Shanahan, M. C. Sanchez, R. C. Webb, J. A. Thompson, C. Rosenfeld, R. Zwaska, A. J. Culling, Douglas Wright, D. Bogert, T. Kafka, W. A. Mann, D. Cherdack, B. Viren, A. Marchionni, J. K. Nelson, I. Trostin, Philip Harris, C. Andreopoulos, D. A. Jensen, M. S. Kim, R. L. Talaga, S. L. Mufson, L. Loiacono, J. J. Kim, D. E. Jaffe, V. A. Tsarev, David Petyt, A. Belias, Matthew L Strait, J. H. Cobb, T. M. Raufer, S. R. Mishra, N. Grossman, Ž Pavlović, Juan Pedro Ochoa-Ricoux, Carlos Escobar, R. K. Plunkett, E. Grashorn, K. Grzelak, P. Schreiner, John Derek Chapman, R. J. Nichol, C. J. Metelko, J. R. Meier, Alec Habig, J. Urheim, V. Paolone, C. R. Bower, S. Childress, R. Hatcher, E. Falk Harris, C. D. Moore, J. A. Musser, C. White, M. V. Frohne, T. Yang, A. Himmel, L. Mualem, D. G. Michael, M. Zois, N. Mayer, C. W. Peck, G. Tzanakos, K. Zhang, G. Koizumi, Karol Lang, J. Reichenbacher, D. J. Koskinen, H. R. Gallagher, D. A. Harris, D. Bhattacharya, J. Hartnell, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Particle physics ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Solar neutrino ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Ordinary neutrinos (nuW bosons ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Neutrino oscillation ,Physics ,010308 nuclear & particles physics ,Beams in particle accelerators ,High Energy Physics::Phenomenology ,Solar neutrino problem ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Spectrometers and spectroscopic techniques ,Neutrino detector ,MINOS ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino - Abstract
This letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum mechanical oscillations of neutrino flavor with mass splitting $|\Delta m^2|=(2.43\pm 0.13)\times10^{-3}$ eV$^2$ (68% confidence level) and mixing angle $\sin^2(2\theta)>0.90$ (90% confidence level). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight, namely neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively., Comment: 5 pages, 4 figures, submitted to Phys. Rev. Lett
- Published
- 2008
- Full Text
- View/download PDF
37. Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam
- Author
-
A. E. Kreymer, William L. Barrett, D. E. Jaffe, P. Shanahan, Carlos Escobar, B. Bock, Marvin L Marshak, R. K. Plunkett, E. Buckley-Geer, W. A. Mann, D. Cherdack, Ken Heller, John Derek Chapman, T. Osiecki, A. Sousa, John Marshall, R. H. Milburn, A. Holin, E. P. Hartouni, G. I. Merzon, N. West, C. J. Metelko, J. R. Meier, V. Smirnitsky, C. Andreopoulos, P. J. Litchfield, D. S. Ayres, P. Lucas, P. Gouffon, S. Murgia, J. J. Evans, D. E. Reyna, A. Himmel, L. Loiacono, B. Viren, L. Mualem, B. Speakman, V. A. Ryabov, L. Jenner, D. J. Auty, Raymond Lee, P. M. Border, Matthew L Strait, C. W. Peck, S. Childress, A. Lebedev, R. L. Talaga, M. Ishitsuka, R. J. Nichol, Harvey B Newman, Karol Lang, E. Falk Harris, J. H. Cobb, Peter D. Barnes, C. D. Moore, N. Grossman, T. Yang, P. Adamson, S. J. Coleman, Caleb Smith, David Petyt, A. D. Marino, R. A. Rameika, T. M. Raufer, H. Ping, Warner A. Miller, T. H. Fields, J. M. Paley, Douglas Wright, Anatael Cabrera, A. A. Wehmann, Jorge G. Morfin, T. Durkin, G. M. Irwin, A. Godley, J. Gogos, Ž Pavlović, D. Bhattacharya, Juan Pedro Ochoa-Ricoux, N. Tagg, Alec Habig, J. Hartnell, P. A. Rodrigues, Ji-Yong Liu, C. James, G. J. Feldman, M. Watabe, G.D. Barr, G. J. Bock, S. L. Mufson, B. Baller, D. J. Koskinen, J. K. de Jong, John Miller, P. A. Symes, Juergen Thomas, D. Bogert, T. C. Nicholls, D. R. Ward, T. Patzak, H. A. Rubin, K. E. Arms, R. Zwaska, A. J. Culling, E. Beall, T. Kafka, M. Kordosky, S. M. Seun, K. Grzelak, M. Dorman, R. C. Webb, J. A. Thompson, Ruben Saakyan, Sacha E Kopp, R. Gran, S. R. Mishra, D. Rahman, A. Marchionni, Andrew Blake, I. Trostin, Niki Saoulidou, R. Armstrong, W. P. Oliver, G. F. Pearce, R. Ford, S. Avvakumov, A. Belias, V. Verebryusov, R. P. Litchfield, A. Mislivec, R. Hatcher, E. A. Peterson, M. Bishai, Christopher P. Ward, B. R. Becker, D. G. Michael, Brajesh C Choudhary, A. R. Erwin, C. Rosenfeld, M. Zois, H. Zheng, V. A. Tsarev, G. Tinti, B. Rebel, J. Boehm, D. Indurthy, W. Smart, P. Schreiner, J. Urheim, V. Paolone, C. R. Bower, J. A. Musser, V. K. Semenov, C. White, P. Vahle, S. Cavanaugh, D. Drakoulakos, D. J. Boehnlein, A. C. Weber, S. M S Kasahara, M. Dierckxsens, E. Grashorn, A. M. McGowan, K. Ruddick, R. Pittam, H. J. Kang, S. K. Kotelnikov, J. Schneps, M. V. Frohne, B. C. Barish, E. Tetteh-Lartey, J. K. Nelson, S. A. Dytman, M. V. Diwan, Philip Harris, D. A. Jensen, M. S. Kim, M. D. Messier, S. Kumaratunga, Mcd Sanchez, J. L. Thron, C. Howcroft, G. Tzanakos, G. Koizumi, M. A. Thomson, N. Mayer, D. Naples, Stanley G. Wojcicki, R. Ospanov, J. Reichenbacher, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, H. R. Gallagher, D. A. Harris, P. Stamoulis, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Solar neutrino ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Fermilab ,010306 general physics ,Neutrino oscillation ,Physics ,010308 nuclear & particles physics ,Solar neutrino problem ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutrino detector ,MINOS ,Physics::Accelerator Physics ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino - Abstract
We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level., In submission to Phys. Rev. D
- Published
- 2008
- Full Text
- View/download PDF
38. Measurement of the atmospheric muon charge ratio at TeV energies with the MINOS detector
- Author
-
V. A. Ryabov, R. Armstrong, W. P. Oliver, R. Pittam, T. H. Fields, Harvey B Newman, Jorge G. Morfin, C. James, M. A. Thomson, D. Naples, Stanley G. Wojcicki, M. V. Frohne, D. Indurthy, S. Murgia, N. Tagg, J. Hylen, R. H. Bernstein, A. Para, S. M. Seun, M. Dorman, T. Patzak, R. P. Litchfield, D. J. Auty, M. C. Goodman, G.D. Barr, Niki Saoulidou, T. Durkin, G. F. Pearce, A. Lebedev, B. C. Barish, G. A. Giurgiu, R. Zwaska, D. Cherdack, L. Mualem, D. Bhattacharya, A. J. Culling, E. Beall, B. Baller, Brajesh C Choudhary, J. Hartnell, J. K. De Jong, P. Lucas, A. Holin, S. K. Kotelnikov, D. Drakoulakos, T. M. Raufer, David Petyt, J. Schneps, John Miller, Juergen Thomas, Warner A. Miller, D. E. Jaffe, G. M. Irwin, B. Rebel, S. Kumaratunga, D. E. Reyna, V. K. Semenov, C. Andreopoulos, E. P. Hartouni, A. Mislivec, H. J. Kang, A. Marchionni, G. J. Feldman, M. Ishitsuka, R. C. Webb, S. R. Mishra, D. Rahman, M. V. Diwan, R. J. Nichol, A. M. McGowan, K. Ruddick, R. Piteira, E. Falk Harris, C. D. Moore, C. Howcroft, G. Tzanakos, Caleb Smith, J. M. Paley, J. A. Thompson, A. Godley, P. Vahle, A. Belias, S. Avvakumov, P. Adamson, R. H. Milburn, Mcd Sanchez, E. Tetteh-Lartey, A. A. Wehmann, T. C. Nicholls, John Marshall, G. Koizumi, B. R. Becker, D. J. Boehnlein, Douglas Wright, Anatael Cabrera, J. J. Evans, V. Smirnitsky, J. L. Thron, N. Mayer, W. Smart, H. Zheng, S. L. Mufson, M. Bishai, H. Ping, J. Reichenbacher, P. A. Symes, B. Speakman, D. J. Koskinen, K. Grzelak, Juan Pedro Ochoa-Ricoux, Philip Harris, P. M. Border, Ž Pavlović, P. Gouffon, C. Bungau, M. Kordosky, P. Stamoulis, P. Schreiner, T. Bergfeld, A. E. Kreymer, R. Ford, C. P. Ward, R. Lee, M. Watabe, B. Viren, D. Bogert, J. K. Nelson, I. Trostin, Marvin L Marshak, T. Kafka, J. Urheim, V. Paolone, C. R. Bower, E. A. Peterson, S. Childress, H. R. Gallagher, D. A. Jensen, M. S. Kim, G. Tinti, K. E. Arms, D. A. Harris, G. I. Merzon, Ken Heller, Ruben Saakyan, Sacha E Kopp, R. Gran, J. A. Musser, Carlos Escobar, M. D. Messier, A. De Santo, N. West, C. White, C. W. Peck, R. A. Rameika, R. K. Plunkett, C. Rosenfeld, V. A. Tsarev, Q. K. Wu, Karol Lang, D. S. Ayres, P. S. Miyagawa, D. G. Michael, J. Gogos, Andrew Blake, Alec Habig, M. Zois, L. Jenner, R. Ospanov, J. Boehm, E. Buckley-Geer, T. Joffe-Minor, Jie Liu, G. J. Bock, A. D. Marino, V. Verebryusov, D. R. Ward, Peter D. Barnes, J. H. Cobb, R. Hatcher, N. Grossman, T. Osiecki, A. Sousa, Francisco Yumiceva, R. L. Talaga, A. R. Erwin, P. J. Litchfield, John Derek Chapman, J. R. Meier, T. Yang, M. Dierckxsens, C. Velissaris, E. Grashorn, A. C. Weber, William L. Barrett, P. Shanahan, B. Bock, W. A. Mann, S. M S Kasahara, H. A. Rubin, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Range (particle radiation) ,Background radiations ,Muon ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Cosmic ray ,Charge (physics) ,7. Clean energy ,01 natural sciences ,Particle identification ,Magnetic field ,Standard Model ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Nuclear physics ,MINOS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,010306 general physics - Abstract
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 207 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be Nμ+/Nμ-=1.374±0.004(stat)-0.010+0.012(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio. © 2007 The American Physical Society.
- Published
- 2007
- Full Text
- View/download PDF
39. First observations of separated atmosphericνμandν¯μevents in the MINOS detector
- Author
-
P. A. Symes, J. Boehm, Douglas Wright, Anatael Cabrera, H. A. Rubin, D. Krakauer, S. Childress, S. L. Mufson, J. Urheim, W. P. Oliver, M. Bishai, V. Paolone, C. R. Bower, A. Godley, Marvin L Marshak, C. Arroyo, C. Howcroft, R. Halsall, C.D. Moore, Z. Pavlovich, Ken Heller, H. Zheng, A. Lebedev, S. Chernichenko, J. A. Musser, S. Madani, G. Tzanakos, S. Kumaratunga, P. Stamoulis, T. H. Fields, D. Bogert, L. Mualem, A. L. Read, D. M. DeMuth, M. J. Murtagh, F. A. Nezrick, V. Verebryusov, C. White, T. Bergfeld, Thomas R. Chase, R. Rameika, W. G. Yan, R. Morse, D. Naples, A. J. Culling, D. Crane, M. V. Diwan, V. K. Semenov, G. Koizumi, C. Perry, A. Stefanik, P. Vahle, B. Speakman, A. De Santo, Randall White, E. Beall, W. Luebke, A. Wehmann, R. Ducar, D. J. Boehnlein, C. Laughton, J. Kilmer, R. Saakyan, M. Kordosky, William L. Barrett, P. Shanahan, B. R. Becker, R. H. Milburn, Carlos Escobar, B. Bock, R. Hatcher, J. McDonald, Andrew Blake, R. K. Plunkett, S. Murgia, M. C. Sanchez, Reinhard Schwienhorst, J. W. Dawson, C. Rosenfeld, M. Watabe, E. P. Hartouni, J. L. Thron, C. W. Peck, V. J. Guarino, J. Hanson, E. A. Peterson, R. P. Litchfield, Q. K. Wu, C. Nelson, I. Trostin, B. Baller, A. R. Erwin, R. C. Webb, Sacha E Kopp, J. A. Thompson, Robert H. Bernstein, H. R. Gallagher, R. Andrews, A. D. Marino, P. S. Miyagawa, R. Trendler, Alec Habig, M. A. Barker, H. Courant, Karol Lang, A. Belias, D. A. Harris, V. Bocean, P. Sullivan, T. Kafka, W. A. Mann, V. A. Tsarev, Theodoros Alexopoulos, C. Velissaris, S. Boyd, K. Grzelak, E. Grashorn, J. J. Grudzinski, M. A. Thomson, Paul Schoessow, David Petyt, C. Andreopoulos, H. Ping, M. Vakili, Yu. A. Gornushkin, Stanley G. Wojcicki, D. E. Reyna, P. J. Litchfield, Brajesh C Choudhary, John Marshall, R. Piteira, P.D. Shield, R. J. Nichol, J. Hylen, A. Para, J. M. Swan, Juan Pedro Ochoa-Ricoux, W. Smart, D. J. Koskinen, S. R. Mishra, E. Buckley-Geer, P. Schreiner, Y. Ho, T. Yang, D. Rahman, E. Maher, M. C. Goodman, D. Bhattacharya, M. P. Andrews, S. Avvakumov, J. Hartnell, C. P. Ward, V.A. Onuchin, S. M. Seun, Warner A. Miller, M. Dorman, N. P. Longley, E. Falk Harris, P. Adamson, J. Schneps, M. Proga, D. R. Pushka, Niki Saoulidou, Peter D. Barnes, G. F. Pearce, D. R. Ward, T. Patzak, John Derek Chapman, V. A. Ryabov, D. G. Michael, J. Trevor, J. R. Meier, R. Lee, M. Gebhard, G. J. Alner, J. H. Cobb, T. C. Nicholls, R. Ford, V. Makeev, N. Grossman, Jorge G. Morfin, C. James, W. Y. Lee, N. Felt, J. Oliver, T. Osiecki, A. Sousa, Francisco Yumiceva, M. Dierckxsens, A. C. Weber, R. L. Talaga, T. Joffe-Minor, M. Ignatenko, G. I. Merzon, N. West, M. Zois, H. J. Kang, D. S. Ayres, S. M S Kasahara, L. Wai, Hyun-Chul Kim, L. Jenner, J. K. Nelson, D. A. Jensen, K. Vaziri, M. D. Messier, J. C. Yun, J. D. Cossairt, W.W.M. Allison, R. Ospanov, P. N. Smith, M. A. Libkind, J. Gogos, N. Hill, Ji-Yong Liu, G. J. Bock, T. Durkin, B. Rebel, L. E. Price, P. Lucas, J. J. Evans, M. Kostin, Harvey B Newman, T. M. Raufer, O. D. Fackler, G. M. Irwin, Kevin Anderson, R. Zwaska, A. Marchionni, G. J. Feldman, Caleb Smith, A. Byon-Wagner, A. Pla-Dalmau, J. M. Paley, V. Smirnitsky, P. M. Border, G. Drake, A. M. McGowan, K. Ruddick, N. Tagg, A. S. Ladran, G.D. Barr, E. Tetteh-Lartey, John Miller, Juergen Thomas, P. Gouffon, B. Viren, Philip Harris, M. V. Frohne, D. Indurthy, N. Pearson, and B. C. Barish
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,01 natural sciences ,Nuclear physics ,Massless particle ,Neutrino detector ,MINOS ,0103 physical sciences ,High Energy Physics::Experiment ,Muon neutrino ,Neutrino ,010306 general physics ,Neutrino oscillation ,Lepton - Abstract
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of muon neutrino and muon anti-neutrino charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations giving: R_data(up/down)/R_MC(up/down) = 0.62^{+0.19}_{-0.14} (stat.) +- 0.02 (sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98 % confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field muon neutrino and muon anti-neutrino interactions are separated. The ratio of muon neutrino to muon anti-neutrino events in the data is compared to the Monte Carlo expectation assuming neutrinos and anti-neutrinos oscillate in same manner giving: R_data(numubar/numu)/R_MC(numubar/numu) = 0.96^{+0.38}_{-0.27} (stat.) +- 0.15 (sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for muon neutrinos and muon anti-neutrinos.
- Published
- 2006
- Full Text
- View/download PDF
40. CONCEPT OF THE LORD EXPERIMENT
- Author
-
V. K. Sysoev, T. Saito, B. N. Lomonosov, E. L. Feinberg, V. A. Ryabov, G. A. Gusev, V. A. Chechin, V. A. Tsarev, N. G. Polukhina, and K. M. Pichkadze
- Subjects
Heterotic string theory ,Physics ,Nuclear and High Energy Physics ,Astronomy and Astrophysics ,String field theory ,Type I string theory ,Relationship between string theory and quantum field theory ,String (physics) ,Atomic and Molecular Physics, and Optics ,Non-critical string theory ,Theoretical physics ,Classical mechanics ,String phenomenology ,String cosmology - Published
- 2006
- Full Text
- View/download PDF
41. Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam
- Author
-
C. Velissaris, P. Stamoulis, A. Godley, A. E. Kreymer, E. Grashorn, B. Speakman, M. Gebhard, R. Piteira, D. J. Koskinen, J. Hanson, B. C. Choudhary, H. A. Rubin, N. P. Longley, C. W. Peck, F. A. Nezrick, Mcd Sanchez, T. Patzak, H. Courant, Karol Lang, V. Bocean, M. Dorman, N. Hill, R. Ford, G. Tzanakos, Douglas Wright, Anatael Cabrera, A. Holin, J. W. Dawson, D. G. Michael, M. Zois, M. P. Andrews, O. Fackler, T. Joffe-Minor, Marvin L Marshak, C. Howcroft, G. Koizumi, V. Smirnitsky, J. M. Swan, M. Watabe, R. Armstrong, W. P. Oliver, G. I. Merzon, N. West, Ken Heller, N. Mayer, E. A. Peterson, T. Kafka, P. A. Symes, S. M. Seun, D. S. Ayres, P. M. Border, J. Reichenbacher, Weonjong Lee, A. Stefanik, N. Tagg, S. L. Mufson, L. Jenner, E. P. Hartouni, J. J. Evans, Niki Saoulidou, G. F. Pearce, B. Baller, R. A. Rameika, T. Osiecki, M. J. Murtagh, B. Rebel, V. Verebryusov, V. A. Ryabov, Randall White, A. Sousa, Francisco Yumiceva, G.D. Barr, V. Makeev, Jorge G. Morfin, S. Boyd, D. Krakauer, R. L. Talaga, P. S. Miyagawa, William L. Barrett, P. Shanahan, B. Bock, E. Beall, S. Childress, Y. Ho, John Miller, C. James, Juergen Thomas, P. J. Litchfield, John Marshall, G. J. Alner, A. Mislivec, C. Arroyo, H. R. Gallagher, Carole C. Perry, M. Dierckxsens, Andrew Blake, R. P. Litchfield, T. C. Nicholls, Yu. A. Gornushkin, D. Rahman, T. Alexopoulos, D. A. Harris, T. H. Fields, J. Trevor, J. H. Cobb, K. Grzelak, N. Grossman, R. Hatcher, A. R. Erwin, V. J. Guarino, M. Bishai, S. Madani, A. D. Marino, J. Gogos, H. Zheng, G. A. Giurgiu, T. Durkin, D. R. Ward, A. C. Weber, M. Ignatenko, Ji-Yong Liu, S. Avvakumov, J. J. Grudzinski, D. M. DeMuth, N. Felt, E. Buckley-Geer, J. Oliver, Thomas R. Chase, G. J. Bock, J. K. de Jong, W. G. Yan, S. Murgia, R. Morse, R. Lee, B. Viren, C. P. Ward, D. Bhattacharya, John Derek Chapman, T. Bergfeld, M. Libkind, D. Pushka, J. Hartnell, P.D. Shield, A. J. Culling, D. Crane, S. Chernichenko, S. M S Kasahara, L. Wai, D. J. Auty, D. Cherdack, A. Lebedev, B. R. Becker, Carlos Escobar, W. Luebke, S. Kumaratunga, J. R. Meier, J. K. Nelson, M. Vakili, L. E. Price, R. K. Plunkett, G. Tinti, K. E. Arms, R. Trendler, Peter D. Barnes, Kevin Anderson, Caleb Smith, Ruben Saakyan, Sacha E Kopp, R. Gran, Paul Schoessow, D. E. Reyna, S.R. Mishra, P. Lucas, T. Yang, Warner A. Miller, J. M. Paley, C. Andreopoulos, E. Maher, M. Kostin, Juan Pedro Ochoa-Ricoux, D. E. Jaffe, Harvey B Newman, J. L. Thron, E. Falk Harris, C. D. Moore, L. Mualem, A. L. Read, A. A. Wehmann, P. Adamson, C. Bungau, M. Proga, T. M. Raufer, M. V. Frohne, R. Halsall, M. Ishitsuka, W. Smart, V.A. Onuchin, G. M. Irwin, G. J. Feldman, J. McDonald, A. Pla-Dalmau, D. Drakoulakos, A. Byon-Wagner, R. H. Milburn, Reinhard Schwienhorst, W. A. Mann, R. J. Nichol, J. Boehm, Q. K. Wu, R. C. Webb, P. Gouffon, J. A. Thompson, Alec Habig, A. Belias, M. A. Barker, P. Schreiner, J. Urheim, V. Paolone, C. R. Bower, V. K. Semenov, J. A. Musser, A. De Santo, P. Vahle, C. White, D. J. Boehnlein, C. Laughton, M. Kordosky, Ž Pavlović, D. Bogert, R. Pittam, C. Nelson, A. Marchionni, I. Trostin, Alexander Terekhov, C. Rosenfeld, V. A. Tsarev, D. Indurthy, N. Pearson, B. C. Barish, H. J. Kang, Hyun-Chul Kim, G. Drake, A. M. McGowan, K. Ruddick, D. A. Jensen, M. S. Kim, A. S. Ladran, K. Vaziri, E. Tetteh-Lartey, R. Ducar, M. D. Messier, Philip Harris, J. C. Yun, J. D. Cossairt, W.W.M. Allison, R. Ospanov, P. N. Smith, P. Sullivan, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, M. V. Diwan, J. Kilmer, D. A. Petyt, H. Ping, S. K. Kotelnikov, J. Schneps, R. Andrews, R. Zwaska, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), MINOS, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Particle physics ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,FOS: Physical sciences ,Q1 ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Muon neutrino ,Fermilab ,010306 general physics ,Neutrino oscillation ,QC ,Physics ,Muon ,010308 nuclear & particles physics ,MINOS ,14.60.Lm, 14.60.Pq, 29.27.-a, 29.30.-h ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Neutrino ,Lepton - Abstract
This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the beam axis at distances of 1 km and 735 km. With 1.27 x 10^{20} 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 \pm 14.4 events. The data are consistent with muon neutrino disappearance via oscillation with |\Delta m^2_{23}| = 2.74^{+0.44}_{-0.26} x 10^{-3} eV^2/c^4 and sin^2(2\theta_{23}) > 0.87 (at 60% C.L.)., Comment: To be submitted to PRL. 6 pages, 4 figures
- Published
- 2006
- Full Text
- View/download PDF
42. Completely automated measurement facility (PAVICOM) for track-detector data processing
- Author
-
N. I. Starkov, V. A. Tsarev, A. S. Rousettsskii, Alexander G. Martynov, L. A. Goncharova, N. G. Polukhina, E. L. Feinberg, I. Yu. Apacheva, and A. B. Aleksandrov
- Subjects
Physics ,Data processing ,Large Hadron Collider ,BitTorrent tracker ,business.industry ,Optical engineering ,Track (disk drive) ,Real-time computing ,Detector ,Electrical engineering ,Experimental data ,business ,Field (computer science) - Abstract
The review of technical possibility and investigations, which are performed at the Completely Automatic Measurement Facility (Russian sounds as PAVICOM), is presented. A very efficient Completely Automated Measuring Facility (PAVICOM) for track-detector data processing in the field of nuclear and high-energy particle physics has been constructed in the Lebedev Physical Institute. PAVICOM is widely used in Russia for experimental data treatment of track detectors (emulsion trackers, solid trackers) in high and low energy physics, cosmic ray physics, etc. The PAVICOM provides the essential improving the efficiency of experimental studies. In contrast to semi-automated microscopes widely used until now, the PAVICOM is capable of performing completely automated measurements and analysis of charged-particle tracks in nuclear emulsions and track detectors without employing hard visual work, In this case, track images are recorded by CCD-cameras and then are digitized and converted into files. Thus, automated measurements and online analysis accelerate the experimental-data processing by approximately thousand times. Completely automatic devices similar to PAVICOM came into operation in scientific centers of Japan, Italy, CERN, and some other countries. In Russia, the PAVICOM is the only facility of such a type. Its possibilities are so wide that satisfy not only needs of investigations being performed in LPI but are also used by other Russian laboratories and Institutes. Thus, PAVICOM actually plays the role of multipurpose user center.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
- Published
- 2005
- Full Text
- View/download PDF
43. DETECTION OF ULTRA-HIGH ENERGY COSMIC RAYS WITH 'SOLAR- SAIL'-TYPE DETECTOR
- Author
-
V. A. Chechin, V. A. Tsarev, and N. G. Polukhina
- Subjects
Physics ,PAMELA detector ,law ,Detector ,Astronomy ,Satellite ,Astrophysics ,Ultra-high-energy cosmic ray ,Solar sail ,Radio wave ,law.invention - Published
- 2003
- Full Text
- View/download PDF
44. Recording of neutron and acoustic emissions from palladium target in a low background underground experiment
- Author
-
V. V. Kuz'minov, P. I. Golubnichyi, B. V. Pritichenko, A. D. Philonenko, G. I. Merzon, V. A. Tsarev, and A. A. Tsaric
- Subjects
Physics ,Nuclear physics ,Acceleration ,Acoustic emission ,Neutron emission ,Scintillation counter ,Neutron ,Neutron spectroscopy ,Background radiation ,Cold fusion - Abstract
42 events of correlated neutron and acoustic emissions from the electrolytically deuterized palladium target were recorded in the course of the experiment which had been fulfilled at the Baksan underground low background Laboratory. The expected number of false correlations was estimated to be close to 5 events. The results obtained confirm the predictions of the acceleration model which connects the cold fusion process with fracturing a deuterized matter.
- Published
- 1991
- Full Text
- View/download PDF
45. Fracto-acceleration model of cold nuclear fusion
- Author
-
A. D. Philonenko, A. A. Tsarik, P. I. Golubnichyi, V. A. Chechin, and V. A. Tsarev
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Nuclear reaction ,Number density ,Mathematical model ,Stochastic process ,Nuclear Theory ,Non-equilibrium thermodynamics ,Acceleration (differential geometry) ,Physics::Geophysics ,Cold fusion ,Nuclear physics ,Electric field ,Physics::Accelerator Physics ,Nuclear Experiment - Abstract
Assumptions, predictions and experimental status of fracto‐acceleration model of cold nuclear fusion are discussed.
- Published
- 1991
- Full Text
- View/download PDF
46. Investigation of the optimal conditions for the observation of correlations in the spectrum of a spark discharge
- Author
-
V. I. Tsarev, A. G. Zhiglinskii, A. A. Kalmakov, and T. N. Shcherbakova
- Subjects
Physics ,Spectrum (functional analysis) ,Condensed Matter Physics ,Spectroscopy ,Computational physics ,Spark discharge - Published
- 1977
- Full Text
- View/download PDF
47. s-dependence, sign of the cut, and factorization in at-channel partial-wave amplitude with Regge cuts
- Author
-
V. A. Tsarev, Peter Kaus, and Bipin R. Desai
- Subjects
Scattering amplitude ,Physics ,Amplitude ,Channel (digital image) ,Factorization ,Quantum electrodynamics ,Scattering length ,Optical theorem ,Scattering theory ,Sign (mathematics) ,Mathematical physics - Published
- 1974
- Full Text
- View/download PDF
48. Recent Results on Nucleon Diffractive Dissociation
- Author
-
S. V. Mukhin and V. A. Tsarev
- Subjects
Physics ,Nuclear physics ,High energy ,Quantum electrodynamics ,Nuclear Theory ,Momentum transfer ,Nuclear Experiment ,Nucleon ,Dissociation (chemistry) - Abstract
Some recent results on nucleon diffractive dissociation in nucleon‐nucleon and nucleon‐nuclei collisions at high energy and small momentum transfer are discussed.
- Published
- 1975
- Full Text
- View/download PDF
49. Photoproduction of π 0 Mesons at Helium and at Photon Energies of 160–240 MeV
- Author
-
L. S. Tatarinskaya, S. V. Rusakov, V. A. Tsarev, P.N. Shareiko, A. S. Belousov, and E.I. Tamm
- Subjects
Physics ,Particle physics ,Photon ,Meson ,Nuclear Theory ,Bremsstrahlung ,Form factor (quantum field theory) ,chemistry.chemical_element ,Momentum ,Nuclear physics ,Amplitude ,chemistry ,Nuclear Experiment ,Nucleon ,Helium - Abstract
Experimental values of the differential and total cross sections of elastic π0meson photo-production at helium were obtained in the photon-energy interval 160–240 MeV. The measured differential cross sections agree with the calculations based on the already developed theory of the relativistic momentum approximation in the bremsstrahlung energy range E γ ≤ 200 MeV. When corrections for the π0 meson interaction in the final state are introduced, one can obtain agreement with the available experimental data up to energies E γ ≤ 300 MeV. The experimental value of the amplitude ℱ 20 + of π meson photoproduction at nucleons was found for 〈r〉 He = 1.4 F.
- Published
- 1974
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.