Alain Campargue, Laurence S. Rothman, Alexander Fazliev, Peter F. Bernath, Tamás Szidarovszky, Linda R. Brown, Nóra Dénes, Ann Carine Vandaele, Tibor Furtenbacher, I.A. Vasilenko, Nikolai F. Zobov, Iouli E. Gordon, Olga V. Naumenko, Shui-Ming Hu, Oleg L. Polyansky, Robert R. Gamache, Jonathan Tennyson, Attila G. Császár, Ludovic Daumont, Joseph T. Hodges, Department of Physics and Astronomy [UCL London], University College of London [London] ( UCL ), Jet Propulsion Laboratory ( JPL ), California Institute of Technology ( CALTECH ) -NASA, LIPhy-LAME, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] ( LIPhy ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Groupe de spectrométrie moléculaire et atmosphérique - UMR 7331 ( GSMA ), Université de Reims Champagne-Ardenne ( URCA ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Environmental, Earth, and Atmospheric Sciences [Lowell], University of Massachusetts at Lowell ( UMass Lowell ), Institute of Atmospheric Optics ( IAO ), Siberian Branch of the Russian Academy of Sciences ( SB RAS ), Harvard-Smithsonian Center for Astrophysics ( CfA ), Harvard University [Cambridge]-Smithsonian Institution, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique ( BIRA-IASB ), Radiology & Physics Unit, UCL Institute of Child Health, UCL Institute of Child Health, Laboratory of Molecular Spectroscopy, Institute of Chemistry, Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk State University, University College of London [London] (UCL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), LAsers, Molécules et Environnement (LAME-LIPhy), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS), Harvard-Smithsonian Center for Astrophysics (CfA), and Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB)
This paper is the fourth of a series of papers reporting critically evaluated rotational–vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D216O, D217O, and D218O. The MARVEL (Measured Active Rotational–Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0–14 016, 0–7969, and 0–9108 cm−1 for D216O, D217O, and D218O, respectively. For D216O, D217O, and D218O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D216O, D217O, and D218O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm−1, from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved.