11 results on '"P. Satunin"'
Search Results
2. Breit-Wheeler pair production from Worldline Instantons
- Author
-
Satunin Petr
- Subjects
Physics ,QC1-999 - Abstract
We calculate the cross-section of Breit-Wheeler process γγ → e+e- in external electric field below the perturbative threshold by the semiclassical method of worldline instantons.
- Published
- 2018
- Full Text
- View/download PDF
3. The TAIGA timing array HiSCORE - first results
- Author
-
Tluczykont M., Budnev N., Astapov I., Barbashina N., Bogdanov A., Boreyko V., Brückner M., Chiavassa A., Chvalaev O., Gress O., Gress T., Grishin O., Dyachok A., Epimakhov S., Fedorov O., Gafarov A., Gorbunov N., Grebenyuk V., Grinuk A., Horns D., Kalinin A., Karpov N., Kalmykov N., Kazarina Y., Kiryuhin S., Kokoulin R., Kompaniets K., Konstantinov A., Korosteleva E., Kozhin V., Kravchenko E., Kunnas M., Kuzmichev L., Lemeshev Yu., Lubsandorzhiev B., Lubsandorzhiev N., Mirgazov R., Mirzoyan R., Monkhoev R., Nachtigall R., Osipova E., Pakhorukov A., Panasyuk M., Pankov L., Petrukhin A., Poleschuk V., Popova E., Porelli A., Postnikov E., Prosin V., Ptuskin V., Rubtsov G., Pushnin A., Samoliga V., Satunin P., Semeney Yu., Silaev A., Skurikhin A., Slunecka M., Sokolov A., Spiering C., Sveshnikova L., Tabolenko V., Tarashansky B., Tkachenko A., Tkachev L., Voronin D., Wischnewski R., Zagorodnikov A., Zurbanov V., Zhurov D., and Yashin I.
- Subjects
Physics ,QC1-999 - Abstract
Observations of gamma rays up to several 100 TeV are particularly important to spectrally resolve the cutoff regime of the long-sought Pevatrons, the cosmic-ray PeV accelerators. One component of the TAIGA hybrid detector is the TAIGA-HiSCORE timing array, which currently consists of 28 wide angle (0.6 sr) air Cherenkov timing stations distributed on an area of 0.25 km2. The HiSCORE concept is based on (non-imaging) air shower front sampling with Cherenkov light. First results are presented.
- Published
- 2017
- Full Text
- View/download PDF
4. The TAIGA timing array HiSCORE - first results
- Author
-
M. Tluczykont, N. Budnev, I. Astapov, N. Barbashina, A. Bogdanov, V. Boreyko, M. Brückner, A. Chiavassa, O. Chvalaev, O. Gress, T. Gress, O. Grishin, A. Dyachok, S. Epimakhov, O. Fedorov, A. Gafarov, N. Gorbunov, V. Grebenyuk, A. Grinuk, D. Horns, A. Kalinin, N. Karpov, N. Kalmykov, Y. Kazarina, S. Kiryuhin, R. Kokoulin, K. Kompaniets, A. Konstantinov, E. Korosteleva, V. Kozhin, E. Kravchenko, M. Kunnas, L. Kuzmichev, Yu. Lemeshev, B. Lubsandorzhiev, N. Lubsandorzhiev, R. Mirgazov, R. Mirzoyan, R. Monkhoev, R. Nachtigall, E. Osipova, A. Pakhorukov, M. Panasyuk, L. Pankov, A. Petrukhin, V. Poleschuk, E. Popova, A. Porelli, E. Postnikov, V. Prosin, V. Ptuskin, G. Rubtsov, A. Pushnin, V. Samoliga, P. Satunin, Yu. Semeney, A. Silaev, A. Skurikhin, M. Slunecka, A. Sokolov, C. Spiering, L. Sveshnikova, V. Tabolenko, B. Tarashansky, A. Tkachenko, L. Tkachev, D. Voronin, R. Wischnewski, A. Zagorodnikov, V. Zurbanov, D. Zhurov, and I. Yashin
- Subjects
Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Detector ,Taiga ,Gamma ray ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics ,01 natural sciences ,Air shower ,Sampling (signal processing) ,0103 physical sciences ,010303 astronomy & astrophysics ,Cherenkov radiation ,Remote sensing - Abstract
Observations of gamma rays up to several 100 TeV are particularly important to spectrally resolve the cutoff regime of the long-sought Pevatrons, the cosmic-ray PeV accelerators. One component of the TAIGA hybrid detector is the TAIGA-HiSCORE timing array, which currently consists of 28 wide angle (0.6 sr) air Cherenkov timing stations distributed on an area of 0.25 km2 . The HiSCORE concept is based on (non-imaging) air shower front sampling with Cherenkov light. First results are presented.
- Published
- 2017
5. Amplitude calibration with the HiSCORE-9 array
- Author
-
Grigory Rubtsov, V. A. Poleschuk, M. Brückner, N. M. Budnev, R. R. Mirgazov, V Platonov, D Bogorodskii, Bayarto Lubsandorzhiev, L. G. Sveshnikova, R. Nachtigall, E. Konstantinov, R. Mirzoyan, L. A. Kuzmichev, O. A. Gress, P Satunin, R. D. Monkhoev, N. B. Lubsandorzhiev, M. Tluczykont, R. Wischnewski, A. Pakhorukov, V. Prosin, O. Chvalaev, Aleksey Zagorodnikov, A. Ivanova, Dieter Horns, M. Kunnas, E. E. Korosteleva, S. Epimakhov, M Rüger, S Kiruhin, A Saunkin, D. Voronin, Yu. A. Semeney, V.A. Tabolenko, A. N. Dyachok, and A. Porelli
- Subjects
Physics ,History ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Astrophysics ,530 Physik ,Computer Science Applications ,Education ,Optics ,Data acquisition ,Amplitude ,Calibration ,ddc:530 ,Ultrahigh energy ,business ,Cherenkov radiation ,Time synchronization - Abstract
HiSCORE is a non-imaging wide-angle Cherenkov array for the detection of extensive air showers induced by ultrahigh energy gamma-rays above 10 TeV and cosmic ray studies above 100 TeV. In October 2013 a 9-station engineering array has been deployed in Tunka valley. For HiSCORE-9, two DAQ systems are being used. The second system is a DRS4 based acquisition system with WhiteRabbit integrated time synchronization. We present the first results on the amplitude calibration from the data of this DAQ system.
- Published
- 2015
- Full Text
- View/download PDF
6. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy
- Author
-
N Budnev, I Astapov, N Barbashina, A Bogdanov, D Bogorodskii, V Boreyko, M Büker, M Brückner, A Chiavassa, O Chvalaev, O Gress, T Gress, A Dyachok, S Epimakhov, A Gafatov, N Gorbunov, V Grebenyuk, A Grinuk, A Haungs, R Hiller, D Horns, T Huege, A Ivanova, A Kalinin, N Karpov, N Kalmykov, Y Kazarina, V Kindin, N Kirichkov, S Kiryuhin, M Kleifges, R Kokoulin, K Komponiest, A Konstantinov, E Konstantinov, A Korobchenko, E Korosteleva, D Kostunin, V Kozhin, O Krömer, M Kunnas, L Kuzmichev, V Lenok, B Lubsandorzhiev, N Lubsandorzhiev, R Mirgazov, R Mirzoyan, R Monkhoev, R Nachtigall, A Pakhorukov, M Panasyuk, L Pankov, A Petrukhin, V Platonov, V Poleschuk, E Popova, A Porelli, V Prosin, V Ptuskin, G Rubtsov, C Rühle, V Samoliga, P Satunin, V Savinov, A Saunkin, F Schröder, Yu Semeney, B Shaibonov, A Silaev, A Skurikhin, V Slucka, C Spiering, L Sveshnikova, V Tabolenko, A Tkachenko, L Tkachev, M Tluczykont, D Voronin, R Wischnewski, A Zagorodnikov, V Zurbanov, and I Yashin
- Subjects
Physics ,History ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Knee region ,Astrophysics ,Gamma-ray astronomy ,Cherenkov Telescope Array ,Computer Science Applications ,Education ,ddc:530 ,Cherenkov radiation - Abstract
TAIGA stands for "Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy" and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for "PeVatrons" (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.
- Published
- 2015
- Full Text
- View/download PDF
7. Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)
- Author
-
M Kunnas, I Astapov, N Barbashina, S Beregnev, A Bogdanov, D Bogorodskii, V Boreyko, M Brückner, N Budnev, A Chiavassa, O Chvalaev, A Dyachok, S Epimakhov, T Eremin, A Gafarov, N Gorbunov, V Grebenyuk, O Gress, T Gress, A Grinyuk, O Grishin, D Horns, A Ivanova, N Karpov, N Kalmykov, Y Kazarina, V Kindin, N Kirichkov, S Kiryuhin, R Kokoulin, K Kompaniets, E Konstantinov, A Korobchenko, E Korosteleva, V Kozhin, L Kuzmichev, V Lenok, B Lubsandorzhiev, N Lubsandorzhiev, R Mirgazov, R Mirzoyan, R Monkhoev, R Nachtigall, A Pakhorukov, M Panasyuk, L Pankov, A Perevalov, A Petrukhin, V Platonov, V Poleschuk, M Popescu, E Popova, A Porelli, S Porokhovoy, V Prosin, V Ptuskin, V Romanov, G I Rubtsov, null Müger, E Rybov, V Samoliga, P Satunin, A Saunkin, V Savinov, Yu Semeney, B Shaibonov, A Silaev, A Skurikhin, M Slunecka, C Spiering, L Sveshnikova, V Tabolenko, A Tkachenko, L Tkachev, M Tluczykont, A Veslopopov, E Veslopopova, D Voronov, R Wischnewski, I Yashin, K Yurin, A Zagorodnikov, V Zirakashvili, and V Zurbanov
- Subjects
Physics ,History ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Cosmic ray ,Astrophysics ,Hybrid approach ,Wide field ,Computer Science Applications ,Education ,Angular resolution ,ddc:530 ,Cherenkov radiation - Abstract
Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve.The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies.The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (~10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.
- Published
- 2015
- Full Text
- View/download PDF
8. Towards gamma-ray astronomy with timing arrays
- Author
-
M Tluczykont, I Astapov, N Barbashina, S Beregnev, A Bogdanov, D Bogorodskii, V Boreyko, M Brückner, N Budnev, A Chiavassa, O Chvalaev, A Dyachok, S Epimakhov, T Eremin, A Gafarov, N Gorbunov, V Grebenyuk, O Gress, T Gress, A Grinyuk, O Grishin, D Horns, A Ivanova, N Karpov, N Kalmykov, Y Kazarina, V Kindin, N Kirichkov, S Kiryuhin, R Kokoulin, K Kompaniets, E Konstantinov, A Korobchenko, E Korosteleva, V Kozhin, M Kunnas, L Kuzmichev, V Lenok, B Lubsandorzhiev, N Lubsandorzhiev, R Mirgazov, R Mirzoyan, R Monkhoev, R Nachtigall, A Pakhorukov, M Panasyuk, L Pankov, A Perevalov, A Petrukhin, V Platonov, V Poleschuk, M Popescu, E Popova, A Porelli, S Porokhovoy, V Prosin, V Ptuskin, V Romanov, G Rubtsov, M Rueger, E Rybov, V Samoliga, P Satunin, A Saunkin, V Savinov, Yu Semeney, B Shaibonov, A Silaev, A Skurikhin, M Slunecka, C Spiering, L Sveshnikova, V Tabolenko, A Tkachenko, L Tkachev, A Veslopopov, E Veslopopova, D Voronov, R Wischnewski, I Yashin, K Yurin, A Zagorodnikov, V Zirakashvili, and V Zurbanov
- Subjects
Physics ,History ,Range (particle radiation) ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Gamma-ray astronomy ,Astrophysics ,Computer Science Applications ,Education ,law.invention ,Telescope ,Crab Nebula ,law ,ddc:530 ,Cherenkov radiation ,Energy (signal processing) - Abstract
The gamma-ray energy regime beyond 10 TeV is crucial for the search for the most energetic Galactic accelerators. The energy spectra of most known gamma-ray emitters only reach up to few 10s of TeV, with 80 TeV from the Crab Nebula being the highest energy so far observed significantly. Uncovering their spectral shape up to few 100 TeV could answer the question whether some of these objects are cosmic ray Pevatrons, i.e. Galactic PeV accelerators.Sensitive observations in this energy range and beyond require very large effective detector areas of several 10s to 100 square-km. While imaging air Cherenkov telescopes have proven to be the instruments of choice in the GeV to TeV energy range, very large area telescope arrays are limited by the number of required readout channels per instrumented square-km (due to the large number of channels per telescope). Alternatively, the shower-front sampling technique allows to instrument large effective areas and also naturally provides large viewing angles of the instrument. Solely measuring the shower front light density and timing (hence timing- arrays), the primary particle properties are reconstructed on the basis of the measured lateral density function and the shower front arrival times. This presentation gives an overview of the technique, its goals, and future perspective.
- Published
- 2015
- Full Text
- View/download PDF
9. Hardware and first results of TUNKA-HiSCORE
- Author
-
M. Brückner, R. D. Monkhoev, M. Büker, Aleksey Zagorodnikov, Dieter Horns, A. N. Dyachok, A. Porelli, L. G. Sveshnikova, Bayarto Lubsandorzhiev, V. Prosin, E. E. Korosteleva, R. Wischnewski, A. Ivanova, D. Spitschan, Yu. A. Semeney, V. A. Poleschuk, Gavin Rowell, O. A. Gress, A. Pakhorukov, Grigory Rubtsov, P Satunin, R. Nachtigall, E. Konstantinov, M. Kunnas, O. Chvalaev, M. Tluczykont, N. M. Budnev, U. Einhaus, D. Hampf, R. R. Mirgazov, S. Epimakhov, and L. A. Kuzmichev
- Subjects
Physics ,Nuclear and High Energy Physics ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,business.industry ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Cosmic ray ,Cherenkov Telescope Array ,law.invention ,Air shower ,law ,ddc:530 ,business ,Instrumentation ,Computer hardware ,Cherenkov radiation - Abstract
As a non-imaging wide-angle Cherenkov air shower detector array with an area of up to 100 km 2 , the HiSCORE (Hundred⁎i Square km Cosmic ORigin Explorer) detector concept allows measurements of gamma rays and cosmic rays in an energy range of 10 TeV up to 1 EeV. In the framework of the Tunka-HiSCORE project we have started measurements with a small prototype array, and planned to build an engineering array (1 km 2 ) on the site of the Tunka experiment in Siberia. The first results and the most important hardware components are presented here.
- Published
- 2013
- Full Text
- View/download PDF
10. The TAIGA experiment: from cosmic ray to gamma-ray astronomy in the Tunka valley
- Author
-
N Budnev, I Astapov, P Bezyazeekov, A Bogdanov, V Boreyko, M Büker, M Brückner, A Chiavassa, O Chvalaev, O Gress, T Gress, O Grishin, A Dyachok, S Epimakhov, O Fedorov, A Gafarov, N Gorbunov, V Grebenyuk, A Grinuk, A Haungs, R Hiller, D Horns, T Huege, A Ivanova, A Kalinin, N Karpov, N Kalmykov, Y Kazarina, N Kirichkov, S Kiryuhin, M Kleifges, R Kokoulin, K Komponiest, A Konstantinov, E Korosteleva, D Kostunin, V Kozhin, O Krömer, M Kunnas, L Kuzmichev, V Lenok, B Lubsandorzhiev, N Lubsandorzhiev, R Mirgazov, R Mirzoyan, R Monkhoev, R Nachtigall, A Pakhorukov, M Panasyuk, L Pankov, A Perevalov, A Petrukhin, V Platonov, V Poleschuk, E Popova, A Porelli, V Prosin, V Ptuskin, G Rubtsov, A Pushnin, V Samoliga, P Satunin, F Schröder, Yu Semeney, A Silaev, A Skurikhin, V Slucka, C Spiering, L Sveshnikova, V Tabolenko, B Tarashansky, A Tkachenko, L Tkachev, M Tluczykont, D Voronin, R Wischnewski, A Zagorodnikov, V Zurbanov, and I Yashin
- Subjects
Physics ,History ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Astrophysics ,Gamma-ray astronomy ,01 natural sciences ,Computer Science Applications ,Education ,0103 physical sciences ,High Energy Physics::Experiment ,ddc:620 ,010306 general physics ,Engineering & allied operations ,Cherenkov radiation ,Muon detector ,Lepton - Abstract
The physical motivations and advantages of the new gamma-observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is presented. The TAIGA array is a complex, hybrid detector for ground-based gamma-ray astronomy for energies from a few TeV to several PeV as well as for cosmic ray studies from 100 TeV to several EeV. The TAIGA will include the wide angle Cherenkov array TAIGA-HiSCORE with ~5 km$^{2}$ area, a net of 16 IACT telescopes (with FOV of about 10x10 degree), muon detectors with a total area of up to 2000-3000 m$^{2}$ and the radio array Tunka-Rex.
- Published
- 2016
- Full Text
- View/download PDF
11. HiSCORE - The Hundred∗i square-km cosmic ORigin explorer
- Author
-
V. Prosin, L. G. Sveshnikova, R. Nachtigall, E. Konstantinov, S. Epimakhov, U. Einhaus, M. Büker, P Satunin, V. A. Poleschuk, Yu. A. Semeney, Bayarto Lubsandorzhiev, R. Wischnewski, Grigory Rubtsov, Dieter Horns, M. Brückner, O. A. Gress, A. Pakhorukov, E. E. Korosteleva, O. Chvalaev, N. M. Budnev, L. A. Kuzmichev, Aleksey Zagorodnikov, Daniel Hampf, C. Spiering, M. Tluczykont, R. R. Mirgazov, A. N. Dyachok, M. Kunnas, A. Ivanova, and N. B. Lubsandorzhiev
- Subjects
Physics ,Range (particle radiation) ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Astrophysics ,Primary (astronomy) ,Ultra-high-energy cosmic ray ,Neutrino ,Cherenkov radiation - Abstract
Addressing the mysteries of cosmic rays requires a comprehensive observational approach, including information on mass composition and spectrum (from CR nuclei) as well as directional information (gamma-rays or neutrinos). HiSCORE covers both approaches using indirect air-shower observations of cosmic rays from 100 TeV to 1 EeV and gamma-rays in the so far poorly covered energy range from 10 TeV to several PeV. Among other questions of astroparticle and particle physics, HiSCORE will allow cosmic ray composition and spectral measurements in the transition range between Galactic and Extragalactic origin. Searching for gamma-rays from the PeV-accelerators, the pevatrons, will consititute a crucial building-block for solving the question of the origin of Galactic cosmic rays. HiSCORE is an array of non-imaging light-collecting stations for Cherenkov light-front sampling. The lateral Cherenkov photon density and arrival-time distribution are measured, allowing the reconstruction of the direction, the energy, and the particle type (mainly shower depth) of the primary particle. A prototype detector station was developed and first air-shower measurements were performed in the Tunka valley (Siberia). The deployment of an engineering array of up to 1 square-km is planned on the Tunka cosmic ray experiment site in Siberia for 2012/2013.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.