1. Ferromagnetic Resonance Modes in the Exchange-Dominated Limit in Cylinders of Finite Length
- Author
-
John B Ketterson, Jinho Lim, and Anupam Garg
- Subjects
Physics ,Condensed matter physics ,Degenerate energy levels ,Exchange interaction ,Yttrium iron garnet ,General Physics and Astronomy ,Ferromagnetic resonance ,Schrödinger equation ,Cylinder (engine) ,law.invention ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,law ,symbols ,Wave vector ,Magnetic dipole - Abstract
We analyze the magnetic mode structure of axially-magnetized, finite-length, nanoscopic cylinders in a regime where the exchange interaction dominates, along with simulations of the mode frequencies of the ferrimagnet yttrium iron garnet. For the bulk modes we find that the frequencies can be represented by an expression given by Herring and Kittel by using wavevector components obtained by fitting the mode patterns emerging from these simulations. In addition to the axial, radial, and azimuthal modes that are present in an infinite cylinder, we find localized "cap modes" that are "trapped" at the top and bottom cylinder faces by the inhomogeneous dipole field emerging from the ends. Semi-quantitative explanations are given for some of the modes in terms of a one-dimensional Schrodinger equation which is valid in the exchange dominant case. The assignment of the azimuthal mode number is carefully discussed and the frequency splitting of a few pairs of nearly degenerate modes is determined through the beat pattern emerging from them.
- Published
- 2021